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Resumen

Se describe un sistema formado por dos átomos que interactúan entre śı ante la pres-
encia de dos láseres que acoplan a sus estados estacionarios. El nivel superior de cada
uno de los átomos es un estado de Rydberg. La interacción interatómica se incorpora
a través de un potencial obtenido numéricamente y que asintóticamente reproduce el
modelo efectivo de Marinescu [1] para átomos alcalinos. Se usaron parámetros realistas
para las intensidades de los láseres y los decaimientos de los niveles excitados en el caso
de átomos de rubidio. La correlaciones atómicas resultantes permiten identificar las
condiciones en que se presentan los fenómenos de bloqueo y antibloqueo.

La Tesis se divide en cuatro caṕıtulos. En el primero se introducen los conceptos básicos
que requiere su desarrollo: matriz de densidad, interacción dipolar eléctrica entre luz
y materia, la ecuación maestra para la evolución del sistema y algunas expectativas
resultantes de aplicar esta última a átomos de tres niveles. En el segundo caṕıtulo
se describen las propiedades de los átomos de Rydberg y se da un breve recuento del
papel de estos en espectroscoṕıa, óptica cuántica y f́ısica básica. En el tercer caṕıtulo
se describe la implementación y las ideas f́ısicas que sustentan al cálculo numérico
para obtener los potenciales de interacción entre dos átomos de Rydberg. En el cuarto
caṕıtulo se resuelve numéricamente la ecuación maestra que describe a los dos átomos
en presencia de los láseres, y se analizan las correlaciones conectadas a diferentes distan-
cias interatómicas. Con ellas se analizan las probabilidades de transiciones conjuntas
de cuatro fotones y se identifica la presencia de bloqueo y antibloqueo para los átomos
de Rydberg.
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Abstract

In this thesis, we describe a system formed by two interacting atoms in the presence of
two lasers that couple its stationary states. The upper level of each atom is a Rydberg
state. The interatomic interaction is incorporated through a numerical potential that
asymptotically reproduces the effective model of Marinescu [1] for alkaline atoms. We
used realistic parameters for the laser intensities and the decay rates of excited levels
in the case of Rubidium atoms. The resultant atomic correlations allow identifying
parameter regions for blockade and antiblockade.

The thesis is organized as follows. In the first chapter, we introduce the basic concepts
required for later chapters: density matrix, electric dipole interaction between light
and matter, the master equation, and the three-level atom. In the second chapter, we
describe the properties of Rydberg atoms and give a brief review of the role played
by them in spectroscopy, quantum optics, and basic physics. In the third chapter,
we describe the implementation and physical concepts that support the numerical
calculation to obtain the interaction potentials between two Rydberg atoms. In the
fourth chapter, we numerically solve the master equation describing the two atoms in
the presence of lasers, and we analyze the connected correlation obtained for different
distances between the atoms. With these correlations, we analyze the probabilities of
four-photon transitions, and we identify the presence of blockade and antiblockade for
Rydberg atoms.

3



4



Contents

1 Atom-light interactions 7
1.1 Dipole approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Two-level atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Decay of a two-level atom . . . . . . . . . . . . . . . . . . . . . 15
1.5 Three level atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Dressed state picture and Autler-Townes splitting . . . . . . . . 17
1.5.2 Decay of a three-level atom . . . . . . . . . . . . . . . . . . . . 18
1.5.3 Electromagnetic induced transparency . . . . . . . . . . . . . . 20

1.6 Adiabatic elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Rydberg atoms 25
2.1 Properties of Rydberg atoms . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Early measurements of Rydberg Atoms . . . . . . . . . . . . . . . . . . 27
2.3 Experiments with light . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Two-photon excitation scheme . . . . . . . . . . . . . . . . . . . 28
2.4 Interaction between Rydberg atoms . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Förster resonances . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Rydberg blockade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Rydberg antiblockade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Quantum optics with Rydberg atoms . . . . . . . . . . . . . . . . . . . 34

3 Calculation of Rydberg potentials 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Step 1: Wavefunctions of alkaline atoms . . . . . . . . . . . . . . . . . 38

3.2.1 Effective potential and numerical solution . . . . . . . . . . . . 38
3.2.2 Quantum defect theory and Coulomb functions . . . . . . . . . 40
3.2.3 Comparison between the two approaches . . . . . . . . . . . . . 41

3.3 Interaction between atoms . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Wigner-Eckart theorem . . . . . . . . . . . . . . . . . . . . . . . 44

5



6 CONTENTS

3.5 Step 2: Relevant basis and symmetries . . . . . . . . . . . . . . . . . . 47
3.5.1 Energy criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Step 3: Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.1 Symmetrized matrix elements . . . . . . . . . . . . . . . . . . . 51
3.6.2 Associated matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.3 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.4 C6 coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Possible extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Antiblockade with two Rydberg atoms 57
4.1 Effective model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Rotating Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Master equation and simulations . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Connected correlation, populations and coherences in the steady
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Avoided Crossings . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Adiabatic elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Four-photon transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Conclusions 79

Appendix A Matrix Numerov method 81
A.1 Solution of the radial Schrödinger equation . . . . . . . . . . . . . . . 82
A.2 Example: Hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix B Wigner Symbols 85
B.1 3j symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B.1.2 Methods for calculation . . . . . . . . . . . . . . . . . . . . . . 86

B.2 6j symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Chapter 1

Atom-light interactions

In this chapter we will study atoms interacting with classical fields. The models in
consideration are called semiclassical since we consider the fields to be classical and we
model the atoms using quantum mechanics. We will explore the dipole approximation
to describe the interaction between radiation and atoms. Then, we give a derivation
of the master equation describing dissipation in the Born-Markov approximation. In
the end, we will review the paradigmatic model of a two-level atom interacting with
a quasi-resonant field, Rabi oscillations and the three-level atom. The models and
approximations described here will be used in the rest of the thesis.

1.1 Dipole approximation

As we will see in the following chapters, under certain conditions, an atom can be
modeled as an electron bound to a positive core (formed by the nucleus and other elec-
trons). In this section, we will study the interaction between such an electron and an
external monochromatic electromagnetic field. Wavelengths of optical fields are larger
than the typical size of atoms1. This will allow us to use the dipole approximation to
simplify the Hamiltonian describing the light-atom interaction [2].

Let us denote the center of mass of the atom by r0, and the relative position of the
electron from the center of mass by r. In the absence of an external electromagnetic
field, the Schrödinger equation satisfied by the wavefunction of the electron, ψ(r, t), is:

[
− ~2

2m
∇2 + V (r)

]
ψ(r, t) = i~

∂ψ(r, t)

∂t
, (1.1)

where V (r) is the potential induced by the positive core. |ψ(r, t)|2 represents the prob-
ability density of finding the electron at r at time t. Note that the description is

1Wavelengths of optical fields go from 400 to 700 nm, while the size of a hydrogen atom is of the
order of a0 = 0.05nm.
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8 CHAPTER 1. ATOM-LIGHT INTERACTIONS

invariant under the transformation ψ(r, t)→ ψ(r, t)eiϕ, where ϕ is a constant phase.

We will describe this field with the aid of the vector and scalar potentials, A(x, t) and
U(x, t), through

E = −∇U − ∂A

∂t
,

B = ∇×A.
(1.2)

Given the form of expressions (1.2), and the fact that all measurable quantities of the
electromagnetic field are related to E or B, and not to A and U , our description must
be invariant under the transformations

A→ A +
~
e
∇χ(r, t),

U → U − ~
e

∂χ(r, t)

∂t
,

(1.3)

where χ(r, t) is any given function. Transformations (1.3) are called gauge transforma-
tions.

Now we bring the two ingredients of our system together. Using the minimal coupling
Hamiltonian, we can couple the free electron to the external electromagnetic field,
preserving the invariance under gauge transformations (1.3). The equation satisfied by
the wavefunction of the electron will be now

[
1

2m
(−i~∇− eA(r + r0, t))

2 + eU(r + r0, t) + V (r)

]
ψ(r, t) = i~

∂ψ(r, t)

∂t
. (1.4)

The form of equation (1.4) is invariant under the extended gauge transformations

A→ A +
~
e
∇χ(r, t),

U → U − ~
e

∂χ(r, t)

∂t
,

ψ(r, t)→ ψ(r, t)e−iχ(r,t).

(1.5)

Notably, the part of the gauge transformation referring to ψ is a local version of the
invariance presented in the case of the free electron.

We work in the Coulomb gauge and take U = 0 in equation (1.4)2. Furthermore, we

2In the Coulomb gauge, the equation satisfied by the scalar potential is ∇2U = −4πρ, where ρ
is the charge density that serves as a source to the external electromagnetic field. If this charge is
localized far away from the atom, we can safely take ρ = 0 and hence U = cte. We set that constant
to zero.
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think that the external field is a plane wave with frequency ω and wavevector k,

A(x, t) = A0e
i(k·x−ωt).

If |r| � λ (that is, if the characteristic size of the atom is much smaller than the
wavelength of the field), we can approximate the vector potential at the position of the
electron with its value at the nucleus position, A(r + r0, t) ' A(r0, t). This is known
as the dipole approximation.

The equation (1.4) becomes[
1

2m
(−i~∇− eA(r0, t))

2 + V (r)

]
ψ(r, t) = i~

∂ψ(r, t)

∂t
. (1.6)

We now perform a gauge transformation (1.5) with χ = − eA(r0,t)·r
~ . We denote the

wavefunction in the new gauge as φ(r, t) = ψ(r, t)e
ieA(r0,t)·r

~ . The equation satisfied by
the wavefunction in the new gauge is[

−∇
2

2m
+ V (r)− eE · r

]
φ(r, t) = i~

∂φ(r, t)

∂t
. (1.7)

According to the last equation, the evolution of the electron can be described by the
Hamiltonian

H =
p2

2m
+ V (r)− eE · r. (1.8)

This is the Hamiltonian we will use to describe atoms interacting with light.

1.2 Density operator

In quantum mechanics of closed systems, the state of a system is represented by |ψ〉.
Through this object we can calculate the expected value of any quantity (via 〈ψ|Â|ψ〉
where Â is the operator associated with the quantity). In this sense, |ψ〉 contains all
the known information about the system.

If the state of the system is |ψ〉, we define the corresponding density matrix operator
as

ρ = |ψ〉 〈ψ| . (1.9)

Sometimes, we cannot be certain that the state of a system is a particular |ψ〉. For
instance, methods that we used to prepare the system could give the state |ψ1〉 with
probability p1, |ψ2〉 with probability p2, and so on. If this is the case, we define the
density operator of the system to be [3]
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ρ =
∑
α

pα |ψα〉 〈ψα| . (1.10)

A state of the form (1.9) is said to be pure, while a state of the form (1.10) is said to
be mixed.

1.2.1 Properties

Some properties of the density matrix operator are [3]:

• If the Hamiltonian describing the unitary evolution of the system is Ĥ, then ρ
evolves according to

∂tρ = − i
~

[
Ĥ, ρ

]
. (1.11)

• The expectation value of an operator Â is given by〈
Â
〉

= Tr[ρÂ]. (1.12)

•
Tr[ρ] = 1. (1.13)

1.3 Master equation

Let us assume that we are interested in studying a system described by a Hamiltonian
Ĥ. According to what we saw in the last section, the description of the system at time
t is given by its density matrix ρ(t). The evolution of ρ(t) is given by the von Neumann
equation (1.11). All this is true only if our system is completely isolated from the envi-
ronment surrounding it. Whereas sometimes this is a reasonable approximation, there
are situations where assuming the system to be completely isolated is not valid. To
correctly describe situations where the system-environment coupling is not negligible,
we will use the master equation. Here we derive it for a general system following the
first chapter of [4].

Let us suppose that we have a system S interacting with a large reservoir system R.
The Hamiltonian describing the composite system is

Ĥ = ĤS + ĤR + ĤSR, (1.14)

where ĤS and ĤR describe respectively S and R. ĤSR describes the interaction between
the subsystems. If we denote the density matrix of the whole system at time t as χ(t),
then the reduced density matrix ρ(t) for the system S is

ρ(t) = TrR(χ(t)), (1.15)
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where TrR(•) indicates a partial trace over reservoir R. Our objective is to obtain an
equation describing the evolution of ρ(t) solely in terms of degrees of freedom of the
system S.

The von Neumann equation for the complete density matrix is

χ̇ =
1

i~

[
Ĥ, χ

]
. (1.16)

We transform the last equation to the interaction picture

˙̃χ =
1

i~

[
H̃SR, χ̃

]
, (1.17)

where we have adopted the notation

Õ(t) = e
i
~ (ĤR+ĤS)Ô(t)e−

i
~ (ĤR+ĤS).

The formal solution of (1.17) is

χ̃(t) = χ(0) +
1

i~

∫ t

0

dt′
[
H̃SR(t′), χ̃(t′)

]
. (1.18)

We substitute χ̃(t) in the commutator in (1.17) to obtain

˙̃χ =
1

i~

[
H̃SR(t), χ̃(0)

]
− 1

~2

∫ t

0

dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (1.19)

Note that until now we have made no approximations, and hence (1.19) is exact.

Next, we assume that no correlations exist between S and R at t = 0. This means that
at the beginning of the evolution we have

χ(0) = ρ(0)R0, (1.20)

where ρ(0) and R0 are respectively the initial density operators of systems S and R.
Since ρ̃ = TrR(χ̃), if we trace out the system R in equation (1.19) we get

˙̃ρ(t) ≈ − 1

~2

∫ t

0

dt′TrR

[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (1.21)

In the last equation we have assumed TrR(H̃SRR0) = 0. This condition means that
the average energy flux from the reservoir to the system S is zero.
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Born approximation

We have assumed that at the beginning, the two subsystems are uncorrelated. At later
times, correlations will begin to appear. If we consider that the interaction between the
two subsystems is weak enough, and that the reservoir is so large that the interaction
with the system S leaves it unaffected, then we can write

χ̃(t) = ρ̃(t)R0 +O(ĤSR).

We neglect terms higher than second order in HSR and approximate the equation as

˙̃ρ(t) = − 1

~2

∫ t

0

dt′TrR

[
H̃SR(t),

[
H̃SR(t′), ρ̃(t′)R0

]]
. (1.22)

This last approximation is called Born approximation.

Markov approximation

One of the most significant complications of the last equation is that the evolution of
ρ at time t is dependent on the whole story of the system. It is reasonable that the
evolution of the system can depend on past history. Since S and R are interacting,
the state of R at a later time t can contain information of the state of S at an earlier
time t′. If the information of past history of S is quickly removed from R, then a good
approximation is to replace ρ(t′) by ρ(t) inside the integral of equation (1.22):

˙̃ρ(t) = − 1

~2

∫ t

0

dt′TrR

[
H̃SR(t),

[
H̃SR(t′), ρ̃(t)R0

]]
. (1.23)

This is called the Markov approximation. Let us now be more specific on what we meant
by quickly in the previous paragraph. For the Markov approximation to be valid, we
need the correlation time of the reservoir to be much smaller than the timescale gov-
erning the dynamics of the system S. To see that this is the case, an analysis similar
to the one in [4] section 1.3 should be performed for each particular system under study.

To further simplify the equation, we now consider that the interaction Hamiltonian
can be written as

ĤSR = ~
∑
i

ŝiΓ̂i, (1.24)

where ŝi and Γ̂i are operators respectively associated to the system S and the reservoir
R. In this way, equation (1.23) takes the form

˙̃ρ(t) = −
∑
i,j

∫ t

0

dt′{[s̃i(t)s̃j(t′)ρ̃(t′)− s̃j(t′)ρ̃(t′)s̃i(t)]
〈

Γ̃i(t)Γ̃j(t
′)
〉
R

+ [ρ̃(t′)s̃j(t
′)s̃i(t)− s̃i(t)ρ̃(t′)s̃j(t

′)]
〈

Γ̃j(t
′)Γ̃i(t)

〉
R
}.

(1.25)
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We can arrive to a simpler form by specifying the systems S and R and their interaction
(1.24). We will do this in the next section for the case in which S is a two-level atom,
and R is a set of electromagnetic modes.

1.4 Two-level atom

Let us now consider an atom interacting with a classical electromagnetic field [3].
Assume the field is a monochromatic wave with frequency ω and polarization ε̂

E = ε̂E0cosωt. (1.26)

Using the dipole approximation, we have ignored the spatial dependence of the field.
We observe that we can separate the field in its positive and negative parts:

E = ε̂(E
(+)
0 eiωt + E

(−)
0 e−iωt) ≡ E(+) + E(−). (1.27)

Now suppose that the atom can be represented by only two levels, |1〉 and |2〉 (this is
an approximation that will be validated later). Let the respective energies be E1 = 0
and E2 = ~ωA. We define ∆ = ω−ωA to be the detuning of the field from the |1〉 → |2〉
transition frequency. In the following, we will assume that the field is nearly resonant
with the atomic transition (i.e. ∆� ωA). The Hamiltonian of the system in the dipole
approximation is then,

Ĥ = ĤA + ĤAF

= ~ωAσ̂22 − eE · r̂.
(1.28)

In the last expression, we have adopted the notation σ̂ij ≡ |i〉 〈j|, and r̂ represents
the position of the electron in the atom relative to its center of mass. If both |1〉 and
|2〉 have well defined parity then 〈i|r̂|i〉 = 0. Multiplying ĤAF from both sides by
I = σ̂11 + σ̂22 we obtain

Ĥ = ~ωAσ̂22 − eE · d21(σ̂21 + σ̂12)

d12 = −e 〈1|r̂|2〉 .
(1.29)

In the interaction picture, the Hamiltonian is

H̃AF = −ed21 ·
(
E(+) + E(−)

) (
σ̂12e

−iωAt + σ̂21e
iωAt
)
. (1.30)

The above product has two terms containing e±i(ω+ωA)t , and two terms with e±i(ω−ωA)t.
Neglecting terms that have fast oscillations corresponds to ignoring the former terms.
This is called the rotating wave approximation (RWA). The resulting simplified Hamil-
tonian is

H̃AF = −ed21 ·
(
E(+)σ̂12e

−iωAt + E(−)σ̂21e
iωAt
)
. (1.31)
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RWA is valid if we are interested in the dynamics of the system occurring at the
timescale of defined by the detuning, 1

∆
for ∆ << ωA. The neglected terms evolve at

a shorter timescale ∼ 1
2ωA

.

Incidentally, the same argumentation is useful to determine when it is suitable to ap-
proximate an atom as a two-level system. If our field is nearly-resonant to just one
transition of the atom, then adding a level that is not related to this transition will
contribute to the Hamiltonian only with fast-oscillating terms. In practice, we also
need to consider the properties of the field we use to excite the atom and that the
atoms have fine and hyperfine structure (figure 1.1 ).

Figure 1.1: a) Example of a configuration where the two-level approximation is not
suitable. The decay of the upper level can populate an initially unpopulated ground
state. (b) Example of a configuration where the two-level approximation is appropriate.

Finally, defining the Rabi frequency as Ω = − 〈1|ε̂·d|2〉E0

~ , the Hamiltonian of the two-
level atom interacting with a classical field in the Schrödinger picture is

Ĥ = ~ωAσ̂22 +
~Ω

2

(
σ̂21e

−iωt + σ̂12e
iωt
)
. (1.32)

The timescale for the evolution that is imposed by the final Hamiltonian (1.32) is 1
Ω

.
This means that, for our procedure to be consistent, we also need Ω� ωA.

This Hamiltonian gives rise to the well-known Rabi oscillations of the populations of
ground and excited state. For instance, if the atom is initially in the ground state,
the probabilities of finding it in the ground and excited state at a later time t are
respectively (figure 1.2)
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P1(t) = cos2

(
Ωt

2

)
,

P2(t) = sin2

(
Ωt

2

)
.

(1.33)

2 4 6 8 10 12
Ωt

0.2

0.4

0.6

0.8

1.0

P1

P2

Figure 1.2: Rabi oscillations in a two-level atom when the initial state is |1〉.

1.4.1 Decay of a two-level atom

In this section, we review the master equation to describe the decay of a two-level
system [4]. We model the reservoir as a quantized multimode electromagnetic field.
The parts of the Hamiltonian of section 1.3 take the particular form

ĤS = ~ωAσ̂22,

ĤR =
∑
k,λ

~ωkâ†kλâkλ,

ĤSR =
∑
k,λ

~Ω∗kλâ
†
kλσ̂21 + h.c.

(1.34)

The sums in the last equation are performed over the different wavevectors k and
wavelengths λ that describe the modes of the electromagnetic field interacting with
the atom. Just as in equation (1.32), the Rabi frequencies are defined to be

Ωkλ = −ieik·rA
√

ωk
2~ε0V

εkλ · d21. (1.35)

εkλ, ωk, â
†
kλ and âkλ are respectively the polarization vector, frequency, creation and

annihilation operator associated with the mode (k, ωk). rA is the position of the atom,
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and V is the quantization volume for the electromagnetic field3.

Note that the Rabi frequencies characterizing the interaction of the atom with each
mode is dependent on the wavevector k and wavelength λ.

The master equation describing the evolution of the two-level system in the Born-
Markov approximation will be of the form Eq. (1.25). We identify

s̃1(t) = σ̂12e
−iωAt,

s̃2(t) = σ̂21e
iωAt,

Γ̃1(t) =
∑
k,λ

Ω∗kλâ
†
kλe

iωkt,

Γ̃2(t) =
∑
k,λ

Ωkλâkλe
−iωkt.

We also assume that the reservoir is in a thermal state with temperature T :

R0 =
e−HR/kBT

Tr [e−HR/kBT ]
=
∏
j

e−~ωj â
†
j âj/kBT

(
1− e−~ωj/kBT

)
.

We use the expression (1.25), replace the particular operators, and perform the inte-
grals. The final master equation takes the form:

ρ̇ = −iω′A [σ̂22, ρ] +
γ

2
(n̄+ 1)(2σ̂12ρσ̂21 − σ̂21σ̂12ρ− ρσ̂21σ̂12)

+
γn̄

2
(2σ̂21ρσ̂12 − σ̂12σ̂21ρ− ρσ̂12σ̂21) .

(1.36)

The transition frequency is modified by a Lamb shift ω′A = ωA + δ. The shift δ and
the decay rate γ can be expressed as integrals of the density mode function g(k) as
detailed in section 2.2 of [4]. n̄ is the average occupation number at temperature T of
the modes with frequency ωA

n̄ =
e−~ωA/kBT

1− e−~ωA/kBT
.

δ contains the Lamb shift. The integral that needs to be calculated to obtain δ diverges,
so a renormalization process needs to be applied to obtain a finite value [6].

3Each mode of the electromagnetic field without sources is mathematically equivalent to a harmonic
oscillator. The quantization of the field in free space is carried out dividing space into cubes of volume
V (for details see chapter 2 of [5]).The electromagnetic field operator for the mode (k, λ) is then

Êkλ(r) = i
√

~ωk

2ε0V
εkλ

[
âkλe

ik·r + h.c.
]

(and the total field is Ê =
∑

k,λ Êkλ). The interaction term

resulting from assuming that the atom-field interaction is dipolar (equation (1.8)) and this expression
is ĤSR in equation (1.34).
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1.5 Three level atom

Now we consider the interaction between a three-level atom and two classical electro-
magnetic fields associated with a pair of laser beams. We label the levels of the atom
as |1〉, |2〉 and |3〉, and we consider that one field is quasi-resonant to the transition
|1〉 → |2〉 whereas the other field is quasi-resonant to the transition |2〉 → |3〉. Ω1 will
denote the Rabi frequency of the first laser and Ω2 of the second.
There are three possible configurations for the levels mentioned above, illustrated in
figure 1.3.

Figure 1.3: The three possible configurations of a three-level atom: (a) Ladder, (b)Λ
and (c)V configuration.

The corresponding Hamiltonian describing the dynamics is

H = ~ω2σ̂22 + ~ω3σ̂33 + ~
Ω1

2

(
σ̂21e

iω1t + h.c.
)

+ ~
Ω2

2

(
σ̂32e

iω2t + h.c.
)
. (1.37)

In the last equation E2 = ~ω2, E3 = ~ω3, and E1 = 0 . The lasers are detuned from the
corresponding transitions by ∆1 and ∆2 (∆1 = |E2−E1|−~ω1 and ∆2 = |E2−E3|−~ω2).
We will focus on the ladder configuration since it is the relevant one for experiments
involving Rydberg atoms. Note however that all the results following are analogous to
the other two configurations up to some modifications.

1.5.1 Dressed state picture and Autler-Townes splitting

To eliminate the fast oscillations, we use the rotating frame defined by

Ĥ0 = ~

0 0 0
0 ω1 0
0 0 ω1 + ω2

 .

In this frame, the Hamiltonian (1.37) can be expressed as (where Û = e
iĤ0t
~ )
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Ĥ3 lev = ÛĤÛ † + i~(∂tÛ)Û †

= ∆1σ̂22 + (∆1 + ∆2)σ̂33 + ~
Ω1

2
(σ̂21 + h.c.) + ~

Ω2

2
(σ̂32 + h.c.) .

(1.38)

It turns out that if we have two-photon resonance (∆2 = −∆1), the eigenvectors and
eigenvalues of Hamiltonian (1.38) have a compact form. If we define θ and φ by [7]:

tan θ =
Ω1

Ω2

,

tan 2φ =

√
Ω2

1 + Ω2
2

∆1

,

(1.39)

then the eigenvectors of Hamiltonian (1.38) are

|a+〉 = sinθsinφ |1〉+ cosφ |2〉+ cosθsinφ |3〉 ,
|a0〉 = cosθ |1〉 − sinθ |3〉 ,
|a−〉 = sinθcosφ |1〉 − sinφ |2〉+ cosθcosφ |3〉 .

(1.40)

and the respective eigenvalues are

E+ =
~
2

(
∆1 +

√
∆2

1 + Ω2
1 + Ω2

2

)
,

E− =
~
2

(
∆1 −

√
∆2

1 + Ω2
1 + Ω2

2

)
,

E0 = 0.

(1.41)

In particular, state |a0〉 is called dark state since this state is not coupled to light.
The energy separation between energies E+ and E− is the origin of the Autler-Townes
splitting [8]. The original line of absorption for the probe laser is split into two lines,
each belonging to the states |a+〉 and |a−〉. From the expressions of the energies we
see that the splitting becomes more noticeable as the laser intensities increase.

1.5.2 Decay of a three-level atom

Consider a three-level atom described by the Hamiltonian
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Ĥ =
3∑
i=1

Eiσ̂ii, (1.42)

where Ei are the energies of the three levels. We assume that |1〉 → |2〉 and |2〉 → |3〉
are the only dipole-allowed transitions. By a process analogous to the section 1.4.1,
we can deduce that the master equation in the Born-Markov approximation describing
the decay of the atom is [9]

ρ̇ =− i

~

[
Ĥ, ρ

]
+
∑
i,j

γi

[
(n̄i + 1)

(
2ŜjρŜ

†
i − ρŜ

†
i Ŝj − Ŝ

†
i Ŝjρ

)
+ n̄i

(
2Ŝ†jρŜi − ρŜiŜj − ŜiŜ

†
jρ
)]
,

(1.43)
where

Ŝ1 = σ̂12 Ŝ2 = σ̂23.

If the frequencies ω12 ≡ |E2−E1|
~ and ω23 ≡ |E3−E2|

~ are such that |ω12−ω23|τ � 1, where
τ is the timescale of evolution of the atom, then we can ignore the terms i 6= j and the
master equation reduces to

ρ̇ =− i

~

[
Ĥ, ρ

]
+
∑
i

γi

[
(n̄i + 1)

(
2ŜiρŜ

†
i − ρŜ

†
i Ŝi − Ŝ

†
i Ŝiρ

)
+ n̄i

(
2Ŝ†i ρŜi − ρŜiŜi − ŜiŜ

†
i ρ
)]
,

(1.44)
where γ2 and γ3 are the decay rates of levels |2〉 and |3〉. n̄2 and n̄3 are the number of
thermal photons at frequencies ω12 and ω23. If we consider a group of N atoms that
decay independently one from another, the master equation that governs the evolution
of the whole atomic system is

ρ̇ =− i

~

[
Ĥ, ρ

]
+
∑
µ

∑
i

γi(n̄i + 1)
(

2Ŝ
(µ)
i ρŜ

(µ)†
i − ρŜ(µ)†

i Ŝ
(µ)
i − Ŝ

(µ)†
i Ŝ

(µ)
i ρ
)

+ γin̄i

(
2Ŝ

(µ)†
i ρŜ

(µ)
i − ρŜ

(µ)†
i Ŝ

(µ)
i − Ŝ

(µ)
i Ŝ

(µ)†
i ρ

)
,

(1.45)

where µ labels the atoms, and S
(µ)
i is an operator acting on the space of the atom µ.

Note that this type of equation could be obtained for atoms of more than three levels,
as long as all its transition frequencies satisfy |ωi − ωj|τ � 1.
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1.5.3 Electromagnetic induced transparency

When we have a system with multiple pathways of excitation we can have Fano in-
terference. The amplitude probabilities of the different pathways can interfere on a
constructive or destructive way, and produce an enhancement or attenuation of certain
properties of the system. Under certain conditions, the different routes to excitation
on three-level atoms can destructively interfere and suppress the absorption of light.
This is known as electromagnetic induced transparency (EIT) [7].

In order to describe EIT, let us consider an ensemble of three-level atoms in the ladder
configuration interacting with two lasers as illustrated in figure 1.3. We will assume
that |2〉 decays to |1〉 with decay rate Γ2. The evolution of this ensemble is described
by the master equation (equation (1.45))

ρ̇ =
1

i~

[
Ĥint, ρ

]
+

Γ2

2
(2σ̂12ρσ̂21 − σ̂22ρ− ρσ̂22) . (1.46)

Incidentally, we note that the steady state of equation (1.46) if we have two-photon
resonance is ρst = |a0〉 〈a0|. This observation will be useful later in chapter 4.

The polarization density of the medium P in the linear regime is characterized by the
linear susceptibility χ,

P = ε0χE. (1.47)

In terms of elements of the density matrix,

P =
∑
i

〈er〉
V

=
N

V

[
d23ρ23e

−iω23t + d12ρ12e
−iω12t + c.c.

]
.

(1.48)

In the first line, the sum is performed over all atoms, and V is the volume of the sample.
In the second line, N is the number of atoms, and we have defined dij ≡ 〈i|er|j〉. We
have assumed that the intensity of the probe laser is homogeneous across the sample.

We can identify in (1.48) the part of the polarization due to the probe field (by keeping
track of the terms that oscillate with ω1). If we label the field associated to the probe
laser as E1, then the polarization density caused by it is:
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P1 ≡ ε0χ1E1. (1.49)

Assuming that the probe field is weak (Ω1 � Ω2) and can be treated as a perturbative
effect, in the steady state of the equation (1.46), the linear susceptibility χ1 for the
probe laser is found to be [7]

χ1 =
|d12|N
ε0~V

4(∆1 + ∆2)(Ω2
2 − 4(∆1 + ∆2)∆1) + 8iΓ2(∆1 + ∆2)2

|Ω2
2 + 2i(∆1 + ∆2)(Γ2 + 2i∆1)|2

. (1.50)

χ1 depends on every parameter of the system but Ω1. If χ1 depended on Ω1 then
equation (1.49) would not reflect a linear relation between the polarization density
induced by the probe laser and E1, since by definition Ω1 = d12·E1

~ .

The absorption coefficient for the probe laser is A = Im(χ1). Note that, if the two-
photon detuning ∆1 + ∆2 is zero, we have A = 0. This can be intuitively understood
by noting that, if ∆1 + ∆2 = 0 and Ω1 � Ω2, the steady state is |a0〉 ≈ |1〉 (from
equation (1.40)). The only state that can contribute to the absorption is |2〉 (since it
is the only state through which photons can be spontaneously emitted). The paths for
excitation to |2〉 are |1〉 − |2〉 and |1〉 − |2〉 − |3〉 − |2〉. Since Ω2 � Ω1, both paths
have similar probability. Their contributions to the amplitude probability of find-
ing the atom in |2〉 when the system has reached its steady state must also be similar
and cancel each other. In this way we can achieve complete cancellation of absorption4.

The susceptibility (1.50) predicts both Autler-Townes splitting and EIT. In figure 1.4
we plot A for different values of the Rabi frequency of the coupling laser, Ω2. It
is possible to go from the conditions where Fano interference is not relevant (figure
1.4(a)) to the conditions where it is relevant(figure 1.4(b)) in a continuous manner
[10]. On each case the separation of the peaks is roughly Ω2, as predicted by equation
(1.41) in the limit Ω1 � Ω2.

4 A less hand-waving argument for explaining A = 0 and its connection with quantum interfer-
ence comes from building an effective non-hermitian Hamiltonian to describe the system, dissipation
included. Expressing the Hamiltonian in the basis of states dressed with the coupling laser one can
appreciate that the mathematical formulation of this problem is exactly the same to the Fano problem
of autoionization, and the conditions for interference can be identified. For details, see section III B
of [7] and references therein.
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Figure 1.4: Absorption for different values of Ω2 when ∆2 = 0 and |d12|N
ε0~V = 1. (a)

The form of the absorption can be well approximated by the sum of two Lorentzians
located at symmetric points around zero. The separation between the peaks is roughly
Ω2. In this range of parameters, Autler-Townes splitting and EIT can be challenging
to tell apart experimentally. (b) The effects of Fano interference become evident, since
A=0 when ∆1 = 0. This cannot be reproduced with the sum of two Lorentzians.
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1.6 Adiabatic elimination

Let us consider again a three-level atom in the ladder configuration illustrated in fig-
ure 1.3. In this section, we will see that if both lasers are far-off resonance and the
two-photon transition is nearly resonant (∆1 + ∆2 ' 0), it is possible to describe the
atom with an effective master equation involving only levels |1〉 and |3〉. The procedure
that will allow us to eliminate the level |2〉 from the description of the atom is called
adiabatic elimination [11].

The master equation describing the atom is (1.46). The evolution equations for the
populations and coherences are

ρ̇11 = γ2ρ22 + i
Ω1

2
(ρ12 − ρ21) ,

ρ̇12 =
(
i∆1 −

γ2

2

)
ρ12 + i

Ω1

2
(ρ11 − ρ22) + i

Ω2

2
ρ13,

ρ̇13 =
(
i(∆1 + ∆2)− γ3

2

)
ρ13 − i

Ω1

2
(ρ11 − ρ22) + i

Ω2

2
ρ13,

ρ̇22 = −γ2ρ22 + γ3ρ33 − i
Ω1

2
(ρ12 − ρ21) + i

Ω2

2
(ρ23 − ρ32) ,

ρ̇23 =

(
i∆2 −

γ2 + γ3

2

)
ρ23 + i

Ω2

2
(ρ22 − ρ33)− iΩ1

2
ρ13,

ρ̇33 = −γ3ρ33 − i
Ω2

2
(ρ23 − ρ32) .

(1.51)

If

|∆1|, |∆2| � Ω1, Ω2, |∆1 + ∆2|, γ2, γ3, (1.52)

the level 2 will be weakly coupled to levels 1 and 3. Due to this weak coupling, the
density matrix elements that relate to level 2 will reach a stationary state faster than
other matrix elements. Making ρ̇12 = ρ̇22 = ρ̇23 = 0, we obtain three equations that
allow us to express ρ12, ρ23 and ρ22 in terms of the matrix elements concerning levels
1 and 3. We then plug these expressions back in the remaining evolution equations
in (1.51). To the lowest order of Ωi

∆j
and γi

∆j
, and assuming ∆2 ' −∆1, the remaining

equations read
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ρ̇11 = γeffρ33 + i
Ωeff

2
(ρ13 − ρ31) ,

ρ̇13 =
[
i(∆1 + ∆2 −∆(1) + ∆(3))− γeff

]
ρ13 + i

Ωeff

2
(ρ11 − ρ33),

ρ̇33 = −γeffρ33 − i
Ωeff

2
(ρ13 − ρ31),

(1.53)

with

γeff = γ3 +
(γ2 + γ3)Ω2

2

(2∆2)2
,

Ωeff = −Ω1Ω2

2∆1

,

∆(1) = − Ω2
1

4∆1

,

∆(3) = − Ω2
2

4∆1

.

We now note that (1.53) can be expressed as the following master equation

ρ̇ =− i
[
(∆1 + ∆2 + ∆(3))σ̂33 + ∆(1)σ̂11 +

Ωeff

2
(σ̂13 + σ̂31), ρ

]
+
γeff

2
(2σ̂13ρσ̂31 − σ̂31σ̂13ρ− ρσ̂31σ̂13) .

(1.54)

Equation (1.54) means that, if the conditions (1.52) on the parameters are met, the
three-level atom dynamics is equivalent to that of a two-level atom interacting with
light, with a direct decay from the excited state |3〉 to the ground state |1〉.



Chapter 2

Rydberg atoms

An ensemble of controlled strongly interacting particles is highly desirable for the im-
plementation of quantum information protocols and the simulation of quantum many-
body systems. For instance, employing strongly interacting atomic systems, one can
realize two-photon logical gates ([12], [13]) and simulate complex condensed matter
systems (study thermalization or properties out of equilibrium [14] and many-body
physics [15]). These systems are also interesting from the purest theoretical point of
view since the interaction among the components of the system usually contributes in
a non-trivial manner to the macroscopic response of the system.

Nowadays, several examples of such strongly interacting systems are experimentally
available, such as polar molecules and ions [16]. The example that concerns this thesis
is Rydberg atoms that interact via the Van der Waals or the dipole interaction. This
system has advantages over other systems presenting strong interactions, such as tun-
ability: the selection of the state in which each atom is in can modify the strength,
type, and angular dependence of the interaction between two Rydberg atoms. The
interaction can be further tuned by the presence of an external electromagnetic field.

One of the most significant consequences of the strong interaction between Rydberg
atoms is the dipole blockade. Heuristically, let us consider a gas of Rydberg atoms
interacting with a light beam resonant with a transition from the ground state to a
Rydberg state. The strong interaction between two nearby excited atoms will take out
of resonance states in which two atoms are on a Rydberg state. Consequently, we can
approximately describe the system with an effective model of two levels, one in which
all the atoms are in the ground state and one in which there is an excitation shared by
all the atoms.

In this chapter, we will review how the field of Rydberg quantum optics has evolved
during the years. An account of the experiments and theoretical studies that have
steered the current research interests of the area will be given so that we can place the
present thesis on context. Along with that, we will review the principal properties of

25
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Rydberg atoms. In the end, we will introduce the Rydberg blockade and antiblockade,
the phenomena that will concern us for the rest of the thesis.

2.1 Properties of Rydberg atoms

Rydberg atoms are atoms with one or more highly-excited electrons1. As we can see in
Table 2.1, there are some properties that scale critically with the degree of excitation,
thus making Rydberg atoms have exaggerated properties when compared to atoms in
lower states.

Table 2.1: Scaling of different properties of Rb atoms with respect to the principal
quantum number n. Values are taken from [16].

Property Scaling Ground state 43S
Binding energy n−2 4.18 eV 8.56 meV
Orbit radius n2 5.63 a0 2384.2 a0

Lifetime n3 26.2 ns 42.3 µs
C6 n11 4707 au -1.697×1019au
〈5p|er|ns〉 n−1.5 4.23 e a0 0.0103 ea0

〈np|er|(n+ 1)s〉 n2 - 1069 e a0

In Table 2.1 we can see that the size of the electron orbit scales as n2. From the numer-
ical values given in the same table, we can conclude that Rydberg atoms are gigantic
compared to their ground state counterpart. An electron on a Rydberg state is loosely
tied to the positive core, making the system highly sensitive to external perturbations,
such as electromagnetic fields and other atoms. As a result of this, the strength of the
interaction between Rydberg atoms2, characterized by the coefficient C6, scales as n11.

We can easily understand the scaling of the lifetime: the overlap between the wavefunc-
tions associated with the ground state and a Rydberg state is small, so Rydberg atoms
decay slowly. From the numerical examples in the table, we can see that Rydberg

1 To keep things simple, during this thesis, we will only talk about Rydberg atoms with just one
highly excited electron.

2The interaction potential between two atoms without permanent electric dipole moment is

V (R) =
C6

R6
.
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states are metastable when compared to the first excited states of the atom.3

2.2 Early measurements of Rydberg Atoms

In 1890 R. Rydberg studied the spectral lines of alkaline atoms. According to him, the
different series of lines followed the structure

Enα = E∞α −
−Ry

(n− δα)2
. (2.1)

where α = s, p, d is labeling the different series, and Ry is the Rydberg’s constant.
E∞α and δα are respectively the limit of the series and the so-called quantum defects.

In the expression (2.1) n is an integer parameter labeling the terms on each series. The
physical interpretation for this parameter, previous to the formulation of Quantum
Mechanics, was given in 1913 with the Bohr model of the atom. In this model, it is
assumed that the atom consists on an electron orbiting circularly around a positive
core. Bohr proposed that the angular momentum of the electron could only take inte-
ger values of ~ and that the electron could only give away radiation by transitioning
between certain levels of energy. By working with this assumptions we can deduce
that the radius of the orbit goes as r ∼ n2 and that the energy must go as E ∼ 1

n2 .
Having these expressions, physicists at this time were already aware that high-excited
atoms could feature exaggerated properties and that they could give origin to interest-
ing physics. Notice that such interpretation is validated by a full quantum description
of hydrogenic atoms. Then, the quantum defect can be interpreted as a measure of the
discrepancy from hydrogen energies due to the shielding of the nuclear charge by the
core electrons in an atom.

Before 1970, there were at least two reasons that made Rydberg atoms an active area
for research [18]. First, Rydberg states are at the border between bound states and
the continuum, and any process which can result in either excited bound states or
ions and free electrons usually leads to the production of Rydberg states. Second, the
exaggerated atomic properties of Rydberg atoms made it possible to realize experiments
which otherwise would be difficult to do using normal atoms. However, high-precision
light sources were not available back then, making the controlled excitation of atoms
to high energy states impossible. The existence of such high energy states could only
be appreciated in uncontrolled processes. For instance, in 1965, astronomers detected

3One might argue that, due to the strong electric dipole moment between adjacent Rydberg states,
fast spontaneous decay to other high energy states. This process depends on other quantum numbers
like the electronic angular momentum and its projection along the quantization axis; it is also hin-
dered by the small number of vacuum modes in the microwave and terahertz regions under standard
conditions [17].
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microwave radiation coming from Orion that was evidence of the transition n110 → n109

of hydrogen atoms [19].

2.3 Experiments with light

With the construction of a narrowband tunable dye laser in 1972, precise excitation
of atoms became available. This allowed studying the energetic structure of highly
excited states of different atoms ([20],[21]) in great detail.

Rydberg atoms are much more sensitive to radiation fields than atoms with low ener-
gies. The controlled excitation of Rydberg atoms opened the door to the experimental
study of the interaction between atoms and radiation fields. For instance, it became
possible to study the interaction between two-level atoms and the field inside a cav-
ity. Since the transition frequencies between two Rydberg states is in the microwave
region, using Rydberg states for these experiments facilitated the task of building a
near-resonant cavity. This was used by the group of Serge Haroche to probe few-photon
fields inside a cavity [22]. It was also proposed by M. Lukin et al. that Rydberg atoms
could be used in the processing of quantum information by means of Rydberg blockade
[23].

2.3.1 Two-photon excitation scheme

The wavelength of the light needed to excite rubidium atoms directly from the ground
state to a Rydberg state is of 279 nm [16], which is in the UV region. Producing
UV radiation to excite atoms is expensive and complicated. This is the reason why a
two-photon excitation process (figure 2.1) is generally used in most of the experiments
with Rydberg atoms. First, light of 780 nm excites the atom from the ground state
(5s1/2, F = 2, mF = 2) to the intermediate state (5p3/2, F = 3, mF = 3). From there,
light of 480 nm excites the atom to a Rydberg state (ns1/2, J = 1/2, mJ = 1/2).

The intensities and detunings of lasers can be chosen to adiabatically eliminate the
intermediate level. This is used when one wants the atoms to behave like effective two-
level systems, and simulate Ising-type spin models [24]. The parameters can also be
tuned to EIT condition, to map the strong Rydberg interaction to photon interactions
and nonlinearities [25].

In most of the theoretical work involving Rydberg atoms, the light-atom interaction
is modeled using the dipole approximation reviewed in chapter 1. The gigantic size
of Rydberg atoms raises the question of how valid is this treatment. For instance, a
rubidium atom in 43S has a radius of ∼ 100 nm, which is no longer negligible when
compared with optical wavelengths. We will still use this description since, in the case
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of plane-wave excitation, the rate of dipole-forbidden transitions 5s → nd is around
2000 times slower than the rate of dipole-allowed transitions 5s → np for n ∈ [25, 59]
[26]. If the light has spatial structure, the dipole-forbidden effects can become more
evident. For instance, the excitation of ground state atoms to Rydberg states using
Laguerre-Gauss beams was studied in [27]. In this case, the dipole-forbidden transition
rates could be as 10 to 100 times slower than dipole-allowed rates.

Figure 2.1: Detailed two-photon excitation scheme for 87Rb.

2.4 Interaction between Rydberg atoms

Rydberg atoms interact strongly with one another, due to their large electric dipole
moment. To roughly describe the interaction between one atom in a Rydberg state |r〉
and another one in a Rydberg state |r′〉, one can add to the Hamiltonian that describes
the two atoms an interaction term Ĥint of the form

Ĥint = V (R) |rr′〉 〈rr′| , (2.2)

where V (R) is the interaction potential and R is the vector connecting atom 1 to atom
2. There are two types of potential of interaction that can be used to describe the
interaction:

• Dipole-dipole interaction:

V (R) =
C3

R3
. (2.3)
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• van der Waals interaction:

V (R) =
C6

R6
. (2.4)

C3 and C6 are numbers that quantify the strength of the interaction.

The most suitable type of interaction to use in expression (2.2) will be dictated by the
degeneracy of the energy of the double state Err′ = Er + E ′r, or the Förster defect
between pair states [28].

2.4.1 Förster resonances

The Förster defect between |rr′〉 and another pair state |r1r2〉 is the difference between
their energies,

∆(r, r′, r1, r2) = |Er + Er′ − Er1 + Er2|.

As we will see in section 3.3, the interaction between atoms can be expressed at the
lowest order as the dipole-dipole interaction

Ĥint(R) =
d̂1 · d̂2 − 3(R̂ · d̂1)(R̂ · d̂2)

R3
, (2.5)

where d̂i is the dipole moment operator of atom i. Ĥint(R) induces either dipole-dipole
(2.3) or van der Waals potential (2.4) depending on the value of the Förster defects
between |rr′〉 and all the other pair states.

First, if |rr′〉 is such that ∆(r, r′, r1, r2) 6= 0 for all possible pair states, then we can
apply the nondegenerate perturbation theory to estimate the form of the potential. If
the states have definite parity, the first-order correction to the energy induced by (2.5)
will be zero. The second correction takes the form

E(2) =
∑

r1,r2,∆(r,r′,r1,r2)6=0

| 〈r1r2|Ĥint|rr′〉 |2

∆(r, r′, r1, r2)
∼ 1

R6
. (2.6)

Then, the interaction potential associated with a pair state with non-zero Förster de-
fects is of the van der Waals type (2.4).
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Now assume that there exists a state |r1r2〉 such that ∆(r, r′, r1, r2) = 0. The Hamil-
tonian restricted to the subspace {|rr′〉 , |r1r2〉} and shifted by the energy Er + Er′
is

Ĥ = ~
(

0 A
R3

A∗

R3 0

)
,

where A = 〈rr′|d̂1 · d̂2 − 3(R̂ · d̂1)(R̂ · d̂2)|r1r2〉. The eigenvalues of H are λ± = ± |A|
R3 .

So, when the state of interest has a zero Förster defect the associated potential is of
the dipole-dipole type (2.3).

We finish this parenthesis with two final remarks. Firstly, the condition of degeneracy
for having a potential V (R) ∼ 1

R3 can be met either naturally or using an electric field
to shift levels ([29], [30]). Secondly, a more physical way of deriving the van der Waals
interaction between two atoms with no permanent dipole moment is using the zero-
point field, as in pages 101 to 104 of [5]. Intuitively, the two atoms have no permanent
dipole moment. The zero-point field fluctuations can momentaneously induce a dipole
moment in one of the atoms. The field produced by the induced moment can induce a
dipole moment in the other atom. Thus, the atoms can interact.

The procedure for numerically obtaining the potential V (R) for particular pair states
|rr′〉 is discussed in chapter 3.

2.5 Rydberg blockade

Arguably, one of the most important consequences of the strong interaction between
Rydberg atoms is the Rydberg blockade. To explain it, let us consider two two-level
atoms, as depicted in figure 2.2 (a). The two levels of each atom are |g〉 and |r〉, and
|r〉 is a Rydberg state. Assume that atoms interact through a van der Waals potential
of the form V (R) = C6

R6 only when both atoms are on the Rydberg state. We drive
the transition |g〉 → |r〉 with a laser that is described by the Rabi frequency Ω. The
Hamiltonian that describes the whole situation (in the RWA) is:

Ĥ = Er |rg〉 〈rg|+ Er |gr〉 〈gr|+ 2Er |rr〉 〈rr|+ C6

R6
|rr〉 〈rr|

+ (
Ω

2
|rg〉 〈gg|+ Ω

2
|gr〉 〈gg|+ h.c.).

(2.7)
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Figure 2.2: Intuitive explanation of Rydberg Blockade: (a) Two atoms separated by a
distance R. (b) Energies of Hamiltonian (2.7) vs. R. When atoms are far apart, we
can excite the system from |gg〉 to |rr〉 by means of two photons, since both transitions
are resonant. On the other hand, as R → 0, the level |rr〉 starts bending due to the
interaction term in (2.7), taking out of resonance the upper transition.

As illustrated in figure 2.2 (b), only the level |rr〉 will be shifted due to the interaction.
At a characteristic separation between atoms, the blockade radius Rb, excitation to
the upmost level due to light starts to be strongly suppressed, and the system of two
atoms will contain one excitation at most. The phenomenon just described here is
called Rydberg blockade, and it will be a central topic in our study.

The Rydberg-Rydberg interaction was experimentally observed by the broadening of
spectral lines in 87Rb [31]. Coherent effects caused by blockade were first observed in
[32], and Rydberg blockaded oscillations with two atoms were reported in 2009 [33].
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2.6 Rydberg antiblockade

In addition to blockade, when we use the two-photon excitation scheme presented
above, we are able to observe antiblockade, or the facilitation of double Rydberg exci-
tation due to interatomic interaction. This effect was theoretically predicted [34], and
experimentally observed in [35].

We consider two atoms being excited to a Rydberg state |ns1/2〉 through two photons,
as in figure 2.3. When both atoms are excited, they will interact through the potential
V (R),

Hint = V (R) |ns1/2, ns1/2〉 〈ns1/2, ns1/2| . (2.8)

In figure 2.4 (a) we plot the Rydberg population for a single atom in the stationary
state vs. ∆2 when V (R) = 0. The laser inducing the lower transition splits the second
level, and we observe a transient Autler-Townes splitting [34].

In figure 2.4 (b) and (c) we plot the Rydberg population and the double Rydberg
population when V (R) = Ω1

2
. We observe that the possibility to excite both atoms

to a Rydberg state is enhanced when the shift produced by the Rydberg interaction
matches one of the Autler-Townes peaks.

Figure 2.3: Excitation from ground state to a Rydberg level via the first laser, with
Rabi frequency Ω1 and detuning ∆1, and the second laser with Rabi frequency and
detuning Ω2 and ∆2. We assume that the decay rates of the two upper levels are
respectively Γ2 and Γ3 and that the red laser is much more intense than the blue one
(Ω2 � Ω1).
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Figure 2.4: (a) Transient Autler-Townes peaks in the population of the Rydberg level in
a single atom when the interaction between atoms is zero. (b) Rydberg state population
of a single atom and (c) Population of the double excited state when the interaction
between atoms is V (R) = Ω1

2
. The graphs were done for ∆1 = 0, Ω1 = 20× 2π MHz,

Ω2 = 0.8× 2π MHz, Γ2 = 5× 2π MHz, and Γ3 = 0. ∆2 = Ω1

2
is marked with the dark

dashed line in (b) and (c).

2.7 Quantum optics with Rydberg atoms

Photons in vacuum do not interact with each other. This presents a severe problem
for applications in which we would like to implement gates between photons.

If photons are on a medium, we can create effective interactions among them. Let us
imagine first the case in which one photon is not able to significantly change the re-
sponse of the system to a second photon. This will be the case if there is no interaction
among the components of the medium. The photon then gets absorbed by an atom
or molecule, but the rest of the components are still unperturbed. On the other hand,
there are some media that present nonlinearities at the level of a few photons. That is,
few photons are enough to produce a significant change in the response of the medium
to incoming photons.
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A staple example of a quantum system that can realize a nonlinearity is a single
two-level atom (since the atom can only absorb a photon at a time). However, the
atom-light coupling is not big enough to ensure that all photons will interact with the
atom. One possible solution to this obstacle is to introduce the atom in a cavity.

Another possible candidate for the creation of a few photons nonlinearities is a Ryd-
berg medium. The strong interaction between Rydberg atoms can be mapped to an
interaction between photons via electromagnetic induced transparency [36]. For an
in-depth review of this and other applications of Rydberg gases, the reader is advised
to check [37] and [38].
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Chapter 3

Calculation of Rydberg potentials

3.1 Introduction

In this chapter, we will review the procedure to numerically calculate Rydberg poten-
tials. The work of this section is based on the tutorial [40] and was implemented using
Matlab. There exists some open source projects targeting Rydberg atoms, such as the
Python library ARC [39]. This library is a tool for performing calculations involving
alkaline and alkaline earth metal atoms, such as energy diagrams, interaction potentials
and Stark maps. The authors of [40] have also released pairinteraction, a software for
calculating the interaction potentials discussed in this chapter.

First of all, we should clarify what we mean by a Rydberg potential. Let us think that
we have two alkaline atoms. As it was stated in the last chapter, when both atoms are
on a Rydberg state, the interaction among them is strong. As a result, the energy of
the state in which both atoms are on a Rydberg state is a function of R, the separation
between the atoms. See figure (2.2) for example: the energy of the level |rr〉 is a func-
tion Err(R). This function is what we will call Rydberg potential. The dependence on
R of Err is what ultimately originates the blockade. In order to fully characterize the
two-body blockade, the fist natural step is to characterize the potential1.

Our objective in this section is then to calculate the functions Er1r2(R). The subindex
ri contains the quantum numbers that completely describe the state of the atom i:
ri ≡ (ni, `i, ji,mj i).

The steps that we will follow to calculate Er1r2(R) are:

• Step 1: Calculation of wavefunctions that describe Rydberg states on an alkaline

1Although this will not be used in the thesis, Rydberg potentials are also useful to predict the
formation of macrodimers [41]: due to multipolar interactions, 2 Rydberg atoms can form a molecule
with bond length exceeding 1µm. The formation of such molecules is marked by minima in the
Rydberg potentials.

37



38 CHAPTER 3. CALCULATION OF RYDBERG POTENTIALS

atom.

• Step 2: Selection of significant basis.

• Step 3: Calculation of the energy via a variational calculation for different R.

3.2 Step 1: Wavefunctions of alkaline atoms

Since alkaline atoms are multielectronic atoms, there is not an exact and analytic
wavefunction to describe them. However, alkaline atoms are special in the sense that
they have only one valence electron. This allows us to approximately describe the
atom as one electron and a positive core (composed by the nucleus and the closed
electronic shells). This, in turn, allows us to describe the valence electron by a one-
body wavefunction. The more excited the valence electron is, the more accurate this
approximation is. If it is far away, effects caused by the fact that the atom has many
electrons will be negligible.

We will denote the wavefunction describing the valence electron by ψn`m. As usual, `
represents the orbital angular momentum and m is its projection along the z axis. The
wavefunction must satisfy the Schrödinger equation(

− ~2

2m
∇2 + V (r)

)
ψn`m = En`mψn`m, (3.1)

where V (r) describes the action of the positive core on the valence electron, and it is
taken to be spherically symmetric. There are two ways in which one can obtain the
wavefunctions that satisfy (3.1). The first option is to propose an effective potential
that captures the effects of the positive core and to numerically solve the equation.
The second option is to use the quantum defect theory to obtain analytical expressions
that approximate the real wavefunctions. We next describe each approach and give a
comparison between them.

3.2.1 Effective potential and numerical solution

One of the most used parametrizations for V (r) is the one proposed in [1]

VM(r) = −Znl(r)
r
− αc

2r4

(
1− e−( r

rc
)
6)

+ Vso, (3.2)

Znl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r,

where Vso = αL·S
r3

is the spin-orbit coupling and Z is the nuclear charge.
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We will refer to the potential (3.2) as Marinescu potential. The first term is a Coulomb
potential. The function Znl(r) seeks to model the fact that the positive core is not a
point and has a charge distribution and a spatial structure.

The second term takes into account that the closed shells can be deformed in the
presence of the valence electron2. αc is the dipole polarizability of the positive core.

The factor
(

1− e−( r
rc

)
6)

serves to cut off the unphysical behavior of this term as r → 0.

The parameters ai and rc are adjusted so that the energy spectrum of potential (3.2)
agrees with the measured spectrum of different alkaline atoms. The values of these
parameters for Rb are listed in Table 3.1. They were taken from [1]. αc = 9.0760 and
α = 1

137
is the fine structure constant.

Table 3.1: Parameters of Marinescu potential for Rb

` = 0 ` = 1 ` = 2 ` ≥ 3
a1 3.696 4.441 3.787 2.399
a2 1.649 1.928 1.570 1.768
a3 -9.861 -16.796 -11.656 -12.071
a4 0.196 -0.816 0.529 0.772
rc 1.662 1.502 4.868 4.798

Since this is a central potential, we separate the Schrödinger equation in spherical
coordinates. We already know that the angular solution will be spherical harmonics.
In order to completely know the wavefunctions and the energies of the problem we
need to solve the radial equation

d2u

dr2
+ 2

(
E − VM(r)− `(`+ 1)

2r2

)
u = 0. (3.3)

In the last equation we have used µ = 1, ~ = 1 and u = rR. R is the radial part of the
wavefunction ψn`m(r, θ, φ) = Rn`(r)Y`,m(θ, φ).

Using the parameters in Table 3.1, we numerically solved the equation (3.3) using
the Matrix Numerov method (which is reviewed on Appendix A). We obtained the
wavefunctions and energies for principal quantum number between 40 and 80, with

• ` = 0, j = 1/2

2The interaction potential between a particle with polarizability αc and an electron separated by
R goes as Vp-e = − αc

2R4 . The electric field generated by the electron at the position of the particle

is E = − 1
R2 R̂. This field will generate a dipole moment in the particle, p = αcE = −αc 1

R2 R̂. The

potential felt by the electron due to the induced dipole is V = p·R̂
R2 = − αc

R4 .
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• ` = 1, j = 1/2, 3/2

• ` = 2, j = 3/2, 5/2

• ` = 3, j = 5/2, 7/2

3.2.2 Quantum defect theory and Coulomb functions

An alternative to the numerical solution is to use the quantum defect formalism. The
method consists in noting that, for large distances, the potential that describes alkaline
atoms must go as an hydrogen-like potential V ∼ 1

r
. In addition, the energy of a given

level (n`j) is modeled as

En`j = −Ry
∗

n∗2
. (3.4)

Ry∗ is the modified Rydberg constant Ry∗ = Ry
1+me/matom

and Ry = 13.6eV. The ef-

fective principal quantum number is n∗ = n − δα, in accordance with the series (2.1)
measured by Rydberg for alkaline atoms. δα is named the defect.

If we insert VM ∼ 1
r

and the energy (3.4) in the radial equation (3.3), the resultant
equation is solved by the so-called Coulomb functions

un∗l =

(
1

a0

)3/2
1√

(n∗)2Γ(n∗ + l + 1)Γ(n∗ − l)
Wn∗,l+1/2

(
2r

n∗a0

)
, (3.5)

where Wk,n is the Whittaker function, and Γ is the gamma function. These solutions are
only accurate far from the origin, where the real potential resembles 1

r
, so they can be

useful to describe Rydberg atoms ([42], [43]). Another limitation of the approximation
is that the spin-orbit coupling has been included only indirectly through the energies.
Expression (3.4) is also used to express the experimental measured spectra of alkaline
atoms. The defect is parametrized as

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ ... (3.6)

The coefficients δi are obtained adjusting (3.4) to the experimental transition energies.
We used the coefficients δi for Rb reported in [44] and given in Table 3.2.

Table 3.2: Parameters for quantum defects for Rb

ns1/2 np1/2 np3/2 nd3/2 nd5/2

δ0 3.131 0.179 2.642 1.348 1.346
δ2 0.178 0.290 0.295 -0.603 -0.596
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3.2.3 Comparison between the two approaches

In the figure 3.1 we compare 3 of the wavefunctions obtained with Numerov with the
Coulomb functions and the wavefunctions given by the ARC library [39].
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Figure 3.1: Comparison between Numerov, Coulomb and the wavefunctions obtained
in ARC [39].The ratio between the Coulomb and Numerov radial probability densities,
|rRcoul|2
|rRnum|2 , is plotted in the lower graph on each case. The peaks in the ratio are located
at the nodes of the wavefunction
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Figure 3.2: The two approaches have a noticeable differences for large r

We see that the two methods agree with the functions from the ARC library. For large
r we get that both solutions are appreciably different (figure 3.2). This is expected,
since spin-orbit coupling is not directly included in the Coulomb functions. In the next
sections we will see how this difference affects the calculation of potentials.

3.3 Interaction between atoms

Now we are ready to take into account the interaction between atoms. Consider two
atoms, as in figure 3.3. Each atom has an electron excited to a Rydberg state. Since
the timescale of nuclei motion is much larger than the timescale for electronic motion,
we can use the Born-Oppenheimer approximation and assume that the nuclei are fixed
in space. Hence, R = |R| can be treated as a parameter of the system rather than as
a degree of freedom.

The Hamiltonian describing the system can be written as

Ĥ = Ĥ0 + Ĥint, (3.7)
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Figure 3.3: Two alkaline atoms separated by a distance R. ri represents the relative
position of each valence electron relative to the corresponding core.

where H0 describes the atoms without interactions. We think that R is large enough so
that the wavefunctions of the two electrons do not overlap appreciably. We also assume
that R is small enough so that we can neglect retardation effects. The electrostatic
interaction of the two atoms is given by

Hint(R) = e2

(
1

|R + r2 − r1|
+

1

|R|
− 1

|R− r1|
− 1

|R− r2|

)
. (3.8)

Since the wavefunctions do not overlap we must have R � r1, r2. The interaction of
two charge distributions with mass centers connected by a vector R can be expressed
as a sum of multipole terms [45]. If both charge distributions are neutral, the most
important contribution is the dipole-dipole interaction potential

Ĥint(R) =
d̂1 · d̂2 − 3(R̂ · d̂1)(R̂ · d̂2)

R3
, (3.9)

where d̂i ≡ e r̂i is the dipole moment operator of atom i and R̂ = R
|R| .

3.4 Matrix elements

Now we describe how to calculate matrix elements using pairs of the functions calcu-
lated in the last section. Let us suppose that we form the basis of N elements

B = {ψr1i(r1)ψr2i(r2)}Ni=1. (3.10)

Each element of the basis is a product of a wavefunction describing atom 1, ψr1i(r1),
and a wavefunction describing atom 2, ψr2i(r2) (we continue to use the notation
ri ≡ (ni, `i, ji,mj i)). Our objective is to calculate the matrix representation of the
Hamiltonian (3.7) in this basis.

We note in the first place that Ĥ0 is diagonal in this basis. These diagonal elements
are the sum of the energies of the two atoms without interaction
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(Ĥ0)ii = Er1i + Er2i .

We get those energies either from the Numerov results or the quantum defect formula.
Since calculating the energies from expressions (3.4), (3.5) and parameters in Table 3.2
is numerically cheaper than storing and later retrieving the energy results of Numerov,
we will use the quantum defect expression for energies in the program. Furthermore,
we note from figure 3.4 that both results of energy agree quantitatively.
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Figure 3.4: Numerov and quantum defect energies for ns1/2 vs. n

In order to calculate the matrix elements of the interaction term Ĥint we will first
calculate the elements 〈n`jm|d̂q|n′`′j′m′〉, where d̂q is the q-component of the dipole
moment on a given basis. We will use the spherical components

d̂0 = d̂z,

d̂±1 = ∓ d̂x ± id̂y√
2

.
(3.11)

This will be convenient since we will be able to use the Wigner-Eckart theorem.

3.4.1 Wigner-Eckart theorem

We define an irreducible tensor of range κ as a set of 2κ + 1 operators such that
all operators have the same transformation properties as the spherical harmonics Yκq
under a rotation of the system of coordinates. We will denote these objects as T̂κq.
The Wigner-Eckart theorem allows us to express the matrix elements of these objects
as

〈n`sjmj|T̂κq|n′`′s′j′m′j〉 = (−1)j−mj(nlsj||T̂κ0||n′l′s′j′)
(

j κ j′

−mj q m′j

)
. (3.12)

(nlsj||Tκ0||n′l′s′j′) is the reduced matrix element,which does not depend neither on mj

and m′j, nor on q. We put a zero in the subindex instead of a q to explicitly indicate
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that this element does not depend on q. The factor (...) is called the Wigner 3j symbol
(see Appendix B).

The spherical components of the dipole moment form a tensor with range one because
we can express them as

d̂q = er

√
4π

3
Y1q. (3.13)

This means we can apply Wigner-Eckart theorem and the elements we need to calculate
will look like (3.12) with κ = 1. Thus we only need to compute the reduced matrix
element (lsj||d̂q||l′s′j′). According to [40], this quantity is

(nlsj||d̂q||n′l′s′j′) = (−1)`+s+j
′+1(nl||d̂q||nl′)

√
(2j + 1)(2j′ + 1)

{
l j s
j′ l′ 1

}
, (3.14)

where {...} is the Wigner 6j symbol (see Appendix B). (l||d̂q||l′) can be separated in
an angular and a radial part

(nl||d̂q||n′l′) =

∫ ∞
0

drRn`(r)(er)Rn′`′(r)r
2(nl||

√
4π

3
Y1q||n′l′)

= (−1)`
√

(2`+ 1)(2`′ + 1)

(
l 1 l′

0 0 0

)∫ ∞
0

drRn`(r)(er)Rn′`′(r)r
2.

In summary, the q component of d will have matrix elements of the form:

〈n`jm|d̂q|n′`′j′m′〉 = µ(n, `, j, n′, `′, j′)Cq(j,mj, j
′,m′j),

Cq = (−1)j
′−1+mj

(
j′ 1 j
m′j q −mj

)
,

µ = (−1)j
′+1+s

√
(2`+ 1)(2`′ + 1)(2j + 1)(2j′ + 1)

(
l 1 l′

0 0 0

)
×
{
j 1 j′

`′ s `

}∫ ∞
0

drRn`(r)(er)Rn′`′(r)r
2.

(3.15)

On figure 3.5 we graph the radial part of the matrix element (µ) vs the difference of
principal quantum numbers of the states involved.
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Figure 3.5: (a)Radial matrix element between some states. Data in color corresponds
to the results obtained with Coulomb functions. Data in black corresponds to the
results with Numerov. (b)Relative difference between color and black data.

The results obtained with Coulomb and Numerov have the same qualitative behavior:
both go to zero if the difference between principal quantum numbers increases. We can
understand this intuitively. If the two quantum numbers are not alike it means that
the overlap between the corresponding wavefunctions will not be big3. As we shall see
in next section, this observation is useful as a criteria to identify states that will not
be relevant for the calculation of a potential.

However, if we quantitatively compare both sets we obtain that the difference is impor-
tant in some regions and for some angular momenta (figure 3.5(b)). The relative error
for the bigger and most relevant matrix elements are enclosed by the black rectangle.
The quantitative differences stem from the differences in the wavefunctions for large
r depicted in figure 3.2. Since Marinescu potential is more complete than Coulomb
functions, in the sense that it includes spin-orbit coupling, we conclude that spin-orbit
coupling is important to describe Rydberg atoms in the regions we are interested in
(large r), so we will use exclusively Numerov wavefunctions for the next calculations.

3Look at the figure (3.1). The biggest contribution for the radial integral that appears in (3.15)
will come from the biggest hump of each wavefunction. If the principal quantum numbers are alike it
means that the humps have a big overlap. Conversely, if they are too different, the humps will have
a negligible overlap and the integral’s value will be small.
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3.5 Step 2: Relevant basis and symmetries

3.5.1 Energy criterion

Let us suppose that we are calculating the potential for the pair of states ψn1,`1,j1,mj1
and ψn2,`2,j2,mj2

and we have chosen a basis like (3.10) to build the matrix representa-
tion of Hamiltonian (3.7).

Ĥint will only contribute to non diagonal elements, since all the states have definite
parity. The ij entry of the matrix representation will take the form

(Ĥ)ij = 〈r1i, r2i|Ĥint|r1j, r2j〉

=
1

R3

[
1∑

q=−1

〈r1i|d̂1q|r1j〉 〈r2i|d̂2q|r2j〉 −
1∑

q,p=−1

RqRp 〈r1i|d̂1q|r1j〉 〈r2i|d̂2p|r2j〉

]
,

(3.16)

where q = ±1, 0 label the components of vectors in the spherical basis. Thus, these
entries contain products of the dipole matrix elements analyzed in the last section.
As we have seen, the dipole matrix element 〈n`jm|d̂q|n′`′j′m′〉 tends to zero as the
difference |n − n′| increases. This means that the most relevant states to include on
the basis are ψn3,`3,j3,mj3

(r1)ψn4,`4,j4,mj4
(r2) where n3 is close to n1 and n4 is close to n2

or vice versa (states that do not have such quantum numbers will couple weakly to the
state of interest and hence will not contribute to the potential). If the last condition
is fulfilled it means that En1`1,j1 + En2`2,j2 ' En3`3,j3 + En4`4,j4 , so the first criterion to
reduce the basis can be restated as:

Condition 1: ψn3,`3,j3,mj3
(r1)ψn4,`4,j4,mj4

(r2) will be included on the relevant basis if
|E − E34| < Υ, where E is the energy of the state of interest and E34 is the energy
of state under consideration. Υ controls the number of states that will be included in
the basis. A larger Υ means a larger basis, and thus a more accurate potential. The
optimal value for Υ will ultimately depend on the range of distances for which we want
to obtain the potential, and the degree of accuracy required. In the final version of
the program used in this thesis, the user chooses Υ at the beginning of the program4.
After obtaining the potential, he/she increases Υ and sees if there is a notable change
in the obtained potential (through relative errors). The process is continued until an
acceptable degree of convergence is reached. An upgraded version of the process would
involve automatizing this convergence test.

4There is a lower bound for the sensitive initial choice of Υ one can make: Υ should not be smaller
than the energetic separation of the target state from adjacent levels.
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3.5.2 Symmetries

Once we have applied the energy criterion, we have a finite basis to work with. If
the size of the basis obtained is N then we will have to calculate approximately N2

matrix elements of Ĥint. Taking into account extra arguments to reduce the dimension
of the basis will reduce the number of required calculations by a power of two. With
this motivation, we now turn to analyze the symmetries of an homonuclear diatomic
system, and how to use them to further decrease the size of the relevant basis without
decreasing the accuracy of the results.

The key argument is that two states with different symmetry properties, namely |ψ1〉
and |ψ2〉, will not be coupled by the Hamiltonian (that is 〈ψ1|Ĥ|ψ2〉 = 0). This induces
a block diagonal structure on the matrix associated to the Hamiltonian, where each
block corresponds to states with particular symmetry properties. In order to obtain
the potential of a chosen state we only need to include states with the same symmetry
properties on the basis.

The symmetry group of an homonuclear system is D∞h. The elements of this group
are:

• Cφ: Rotation by the angle φ about the molecule axis.

• iC ′2: Reflection across any plane that contains the molecule axis.

These symmetries have an associated conserved quantity. If we align the molecule axis
to ẑ, then the conserved quantity associated to Cφ is the component along ẑ of the
sum of angular momentum. This means

〈n1`1s1j1mj1n2`2s2j2mj2|Ĥ|n′1`′1s′1j′1m′j1n
′
2`
′
2s
′
2j
′
2m
′
j2
〉 6= 0⇔ mj1 +mj2 = m′j1 +m′j2 .

(3.17)

We can exploit the iC ′2 symmetry by choosing the xz plane (so the symmetry transfor-
mation is y→ −y) and changing to the basis

|ψ〉+/− =
1√
2

( |n1`1s1j1mj1n2`2s2j2mj2〉

+ d(−1)l1+l2+mj1+mj2−j1−j2 |n1`1s1j1 −mj1n2`2s2j2 −mj2〉),
(3.18)

where d = ±1. The Hamiltonian will not couple states + with states -. Note that this
state only has well defined total angular momentum if mj1 +mj2 = 0. This is because
Cφ and iC ′2 do not commute. For the case mj1 +mj2 = 0 we can use both symmetries,
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and for the case mj1 +mj2 6= 0 we only use the rotation symmetry.

Another symmetry transformation of the system inversion: (ri → −ri,R → −R). A
symmetrized basis that can be used to exploit this symmetry is

|ψ〉g/u =
1√
2

(
|n1`1s1j1mj1n2`2s2j2mj2〉 − p(−1)l1+l2 |n2`2s2j2mj2n1`1s1j1mj1〉

)
.

(3.19)

|ψ〉g/u is said to have gerade/ungerade symmetry. p = ±1 for g/u. The Hamiltonian
will not couple gerade states with ungerade ones.

The last symmetry is permutation: (1, 2)→ (2, 1). The basis to exploit this symmetry
is

|ψ〉s/a =
1√
2

(|n1`1s1j1mj1n2`2s2j2mj2〉 − f |n2`2s2j2mj2n1`1s1j1mj1〉) , (3.20)

where f = ±1 for symmetric/antisymmetric. Since we have both permutation and
inversion symmetry, we can realize by looking at equations (3.19) and (3.20) that
P = (−1)`1+`2 is also a conserved quantity of the system.

In summary, we further reduce the size of the basis to calculate the potential associated
with ψn1,`1,j1,mj1

ψn2,`2,j2,mj2
by:

• Choosing either the gerade or ungerade symmetry for the state for which we want
the calculate the potential.

• Calculating P = (−1)`1+`2 and M = mj1 +mj2.

• Eliminating states from the basis that does not have the same P or M and sym-
metrizing the surviving states to match the g or u symmetry chosen for the
relevant state.

All these steps amount to choose a block on the diagonal of the matrix depicted in
figure 3.6.
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Figure 3.6: Example of the block structure induced by the symmetries of the system.
The matrix is divided in gerade and ungerade blocks (gg and uu). Each sub-block is
divided in blocks with different P and M .

Figure 3.7 demonstrates that the effort of taking into account the symmetries of the
system pays off in the reduction of the size of the problem.

2 4 6 8 10 12
(GHz)

101

102

103

104

14

Size of basis

no sym

sym

Figure 3.7: Size of the basis vs Υ with and without the use of symmetries when the
target state is 116s1/2116s1/2.



3.6. STEP 3: POTENTIALS 51

3.6 Step 3: Potentials

3.6.1 Symmetrized matrix elements

Now that we have limited the size of the basis, we are ready to construct the matrix
representing the Hamiltonian (3.7).

To calculate the matrix elements we first have to symmetrize the states (gerade or
ungerade). Alternatively, we can implement the symmetrization at the level of matrix
elements. For this purpose, let us calculate 〈ψ|dqαdqβ |φ〉 (which is the type of elements
we have to calculate when constructing the matrix associated with Hint) where |ψ〉 and
|φ〉 are states with g or u symmetry

|ψ〉 =
1√
2

(
|η1η2〉 − pψ(−1)l1+l2 |η2η1〉

)
,

|φ〉 =
1√
2

(
|η3η4〉 − pφ(−1)l3+l4 |η3η4〉

)
,

where {ni, li, ji,mi} ≡ ηi. By a direct calculation we obtain

2 〈ψ|d̂qα d̂qβ |φ〉 = 〈η1|d̂qα |η3〉 〈η2|d̂qβ |η4〉 − pφ(−1)l3+l4 〈η1|d̂qα |η4〉 〈η2|d̂qβ |η3〉
− pψ(−1)l1+l2 〈η2|d̂qα |η3〉 〈η1|d̂qβ |η4〉
+ pψpφ(−1)l1+l2+l3+l4 〈η2|d̂qα|η4〉 〈η1|d̂qβ |η3〉 .

(3.21)

3.6.2 Associated matrix

As we have previously mentioned, the Hamiltonian of the system is given by

Ĥ = Ĥ0 + Ĥint.

Ĥ0 is diagonal in the chosen basis. The interaction Hamiltonian expressed in terms of
the spherical components of the dipole moments of the two atoms is

Ĥint ≡
d̂1 · d̂2 − 3(r̂ · d̂1)(r̂ · d̂2)

r3

=
d̂1zd̂2z(1− 3cos2θ)− d̂1+d̂2− − d̂1−d̂2+

r3

− 3sin2θ(d̂1+d̂2+ + d̂1−d̂2− − d̂1+d̂2− − d̂1−d̂2+)

2r3

− 3sinθcosθ(d̂1−d̂2z − d̂1+d̂2z + d̂1zd̂2− − d̂1zd̂2+)√
2r3

,

(3.22)
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where θ is the angle between the quantization axis and the molecular axis. The matrix
elements of each of the operators d̂qα d̂qβ appearing on equation (3.22) can be calculated
using the expression (3.21).

3.6.3 Potentials

We are ready to obtain the potential for a given state ψn1,`1,j1,mj1
ψn2,`2,j2,mj2

for a range
of separation between atoms [Rmin, Rmax]. For each R on that range, we build the ma-
trix associated to the Hamiltonian and diagonalise it. On each step, we will choose
the eigenvalue that matches the eigenvector with the biggest overlap with the state
ψn1,`1,j1,mj1

ψn2,`2,j2,mj2
. The potential will be the curved formed by the selected points.

Figure 3.8 gives an example of the type of potentials obtained with the procedure
described above.
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Figure 3.8: Results for the potential of the target state |62d3/2, 62d3/2〉. The overlap of
the corresponding eigenvector with the target state is encoded in the darkness of the
curve. The darkest curve corresponds to the potential for |62d3/2, 62d3/2〉.

What is the validity region for the results? There is no upper limit for the distance
between atoms, since for R→∞ all the energy modifications due to interaction should
disappear, and we see that this is indeed the case for our numerical results since



3.6. STEP 3: POTENTIALS 53

Ĥint ∼ 1
R3 . The distances for which the numerical potentials described here are valid

are bounded from below by the Le Roy radius [49]. This is the distance at which
the wavefunctions of the valence electrons of each atom start to overlap, so we cannot
longer consider that each atom belongs to a specific atom. The Le Roy radius of a pair
of alkaline atoms in the same state (n, `, j) is [49]

RLR = 4
√
〈n`j|r̂2|n`j〉.

RLR ∼ n2, since the expected value of the radius grows as n2. For n ∼ 60, RLR is
approximately 0.18 µm. Clearly, there is another aspect that limits the validity of
this potentials for short distances. In section 3.3 we have truncated the multipole
expansion describing the interaction. For short distances the ignored terms could
become important.

3.6.4 C6 coefficient

If the state of interest is nondegenerate in the Förster resonance sense (see section
2.4.1), then the form of the interaction potential between two atoms can be approxi-
mated as

V (R) =
C6

R6
. (3.23)

Assume that the state of interest is |rnrn〉 ≡ |n`1s1j1m1, n`2s2j2m2〉 (i.e. that both
atoms have the same principal quantum number). We approximate C6 by the biggest
contribution of expression (2.6), that comes from pair states where both atoms have
n− 1 as principal quantum number

C6 ∼
| 〈rn−1rn−1|Ĥint|rnrn〉 |2

∆Ern−1rn−1rrrn

.

The level spacing between adjacent Rydberg levels goes as ∆E ∼ n−3:

∆Ern−1rn−1rrrn ∼ |
1

n2
− 1

(n− 1)2
| = | 2n− 1

n2(n− 1)2
| ∼ 1

n3
.
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Figure 3.9: log(C6) vs log(n). Blue dots are the numerical results and the red line
corresponds to the fitted line. The slope of the fit, b=11.81, agrees acceptably with
the expected behavior C6 ∝ n11.

The numerator, on the other hand, goes as | 〈rn−1rn−1|Ĥint|rnrn〉 |2 ∼ n8, since the
transition dipole moment between neighboring levels goes as n2. This all implies that
C6 ∼ n11.

We obtain the potentials for pair states of the form |n`jmj, n`jmj〉. Then, we fit to
each curve a function of the type C6

R6 . Figure 3.9 shows the C6 coefficients obtained
with this procedure (blue dots). We see that the behavior C6 ∼ n11 agrees well with
our numerical results.

3.7 Possible extensions

There are some directions one could take to make a more complete program:

• The addition of an external static electric field to the program would allow to
tune the interaction potential (add angular dependence, or change the type of
potential from ∼ 1

r6
to ∼ 1

r3
by creating a zero Förster defect). The presence of

external fields could be implemented by adding HE to the Hamiltonian, where

ĤE = (−er̂ · E)⊗ 1 + 1⊗ (−er̂ · E). (3.24)

If we express the products in terms of the spherical components of the electric
field and r̂, the matrix elements of this addition could be readily calculated with
the tools we have. However, a serious complication is added: the electric field
would break symmetries that are useful to reduce the dimension of our problem.
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• Effects of interactions bigger than the dipole-dipole interaction of equation (3.8)
could become important for gases with high density. The higher-order interac-
tions can also be expressed in terms of spherical momenta, allowing to use the
Wigner-Eckart theorem to calculate its matrix elements.
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Chapter 4

Antiblockade with two Rydberg
atoms

Having characterized the interaction between two Rydberg atoms, we now focus on
studying the dynamics of two atoms with such interactions driven by lasers. Two 87Rb
atoms separated by a distance R are interacting with two lasers. The two lasers can
excite each atom individually from the ground state |5s1/2〉 to a Rydberg state |60s1/2〉
via a two-photon transition, with |5p3/2〉 as the intermediate state (figure 4.1(a)). From
now on, we will call the ground state |1〉, the intermediate state |2〉, and the Rydberg
level |3〉.

Figure 4.1: (a) Excitation scheme for one atom (b)Excitation scheme for two atoms.
The dependence of the energy of the level 33 is due to the Rydberg interaction.

Let ω1 be the frequency of the red laser and ω2 be the frequency of the blue laser.
The detuning between laser 1 and the transition |1〉 → |2〉 is ∆1 = ω12 − ω1. Like-
wise, the detuning between the blue laser and the transition |2〉 → |3〉 is ∆2 = ω23−ω2.

The Hamiltonian describing the system is

Ĥ =
∑
im

εiσ̂ii
(m) + Ĥdd− d̂1 · [E1(x1, t) + E2(x1, t)]− d̂2 · [E1(x2, t) + E2(x2, t)] . (4.1)

57
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We denote σ̂
(m)
ij ≡ |i〉m 〈j|m. εi is the energy of level i, d̂i is the electric dipole moment

of atom i, xi is its position, and Ei(x, t) is the electric field of laser i. Ĥdd is the static
dipole-dipole interaction between the two atoms

Ĥdd =
d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

R3
. (4.2)

4.1 Effective model

In chapter 3, we learned that the static dipole-dipole interaction between the two
atoms:

• Admixes Rydberg states. At a given distance R between the atoms, the double-
excited state |33〉 is actually a composition of pair states whose energy is close
to the energy of the state of interest,

|33(R)〉 =
∑
αβ

c33
αβ(R) |αβ〉 . (4.3)

c33
αβ(R) are the coefficients quantifying the contribution of each basis element |αβ〉

to the state |33(R)〉. We must have

lim
R→∞

|33(R)〉 = |33〉 ,

lim
R→∞

c33
αβ(R) = δ3αδ3β.

From the diagonalization we also obtain admixed states that asymptotically cor-
respond to other pair states. We will denote these as |αβ(R)〉 (|αβ(R)〉 tends to
|αβ〉 as atoms separate).

• Creates a shift of the order of GHz on the energy of the state with two Rydberg
atoms. The energy of the double Rydberg state |33〉 goes as

ε33(R) = 2ε∞33 + ∆33(R), (4.4)

where ε∞33 denotes twice the energy of level |3〉 without interaction. Likewise, the
energy of the other double Rydberg states will be

εαβ(R) = 2ε∞αβ + ∆αβ(R).

In the figure 4.1(b), |3〉 was considered to be the only Rydberg level populated due to
the excitation lasers. But in principle, other Rydberg states could be populated due
to the admixing and the shifts produced by the interaction. What are the conditions
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the system has to fulfill for the diagram to be a reasonable approximation?

In this section, we will deduce the effective model represented in figure 4.1(b), and
we will identify the conditions for this to be an acceptable description of the system.
First, we need to analyze the part of the Hamiltonian referring only to the atoms

ĤA =
∑
im

εiσ̂
(m)
ii + Ĥdd. (4.5)

We proceed to review the approximations that can be used to simplify the system.

First approximation

The interaction term (4.2) can a priori mix all atomic states. That is, expressions
like (4.3) should follow for all pair states of the system, and not just |33〉. The first
approximation we will make consists in neglecting the admixing of pair states that do
not have a double Rydberg excitation.

One atom on a low energy state and one atom on a Rydberg state, or two atoms
on low energy states also have a non-zero dipole-dipole interaction. However, these
interactions are negligible when compared to the Rydberg-Rydberg interactions. To
see this, we consider the numerical values of the dipole matrix elements from Table
2.1:

〈43S|er|44S〉 = 1069ea0,

〈43S|er|5P 〉 = 0.0103ea0,

〈5P |er|5S〉 = 4.23ea0.

The dipole matrix element between two Rydberg states is at least three orders of mag-
nitude bigger than the dipole matrix element in the other two cases. In chapter 3, we
restricted the basis (3.10) to contain just pair states where both atoms were in Rydberg
states. Assume that in the calculation described in chapter 3, we included in the basis
pair states where one of the atoms is in either |1〉 or |2〉. The matrix representing ĤA

would have a structure like the one illustrated in figure 4.2. The section corresponding
to pair states with at most one Rydberg excitation would be approximately diagonal,
while the section corresponding to two Rydberg excitations would be of the form of
figure 3.6.
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Figure 4.2: Structure of of the matrix representation of ĤA in the basis
{|1〉 , |2〉 , |3〉 , |β1〉 , ...}

⊗
{|1〉 , |2〉 , |3〉 , |β1〉 , ...}. {|βi〉} are other Rydberg states, in

addition to |3〉. The section corresponding to pair states where with at most one Ryd-
berg excitation is approximately diagonal, so the admixing of pair states of this nature
is negligible.

Therefore, the first approximation that we consider is to neglect interactions that do
not occur between the Rydberg states. We will assume that the energies of the pair
states where at least one of the two atoms is not in a Rydberg state do not change in
a significant proportion for the separation range under consideration, and that these
states will not admix with other states. Hence, the natural basis for expressing our
problem when the distance between atoms is R is

B = {|11〉 , |12〉 , |13〉 , |21〉 , |22〉 , |23〉 , |31〉 , |32〉} ∪ {|αβ(R)〉}α,β.

In this basis the Hamiltonian takes the form

Ĥ = ε2

(
σ̂

(1)
22 + σ̂

(2)
22

)
+
∑
αβ

(εα + εβ)
(
σ̂(1)
αα + σ̂

(2)
ββ

)
+
∑
αβ

∆αβ(R) |αβ(R)〉 〈αβ(R)| − (d̂1 + d̂2) · (E1 + E2).
(4.6)

Not all the Rydberg levels will enter into the dynamics induced by light. For this
to be true, we need that the detuning of laser two and the shifts ∆αβ(R) caused by
interaction do not combine in a way that allows for an accidental excitation of a double
Rydberg state that is not |33(R)〉. This can be guaranteed if both ∆2 and ∆αβ(R) are
much smaller than the characteristic separation of Rydberg states around 60s. This
separation is of the order of GHz. In figure 4.3, we plot the shift for 60s60s, following
the same color code of the last chapter. We see that for 4µm ≤ R the shift induced is
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not appreciable in the scale of GHz.

As long as our atoms are separated by a distance larger than 4µm, double Rydberg
states that are not |33〉 should not enter into the dynamics of the system, and we can
reduce the Hamiltonian to

Ĥ = ε2

(
σ̂

(1)
22 + σ̂

(2)
22

)
+ ε3(σ̂

(1)
33 + σ̂

(2)
33 ) + ∆33(R) |33(R)〉 〈33(R)|

− d̂1 · [E1(x1, t) + E2(x1, t)]− d̂2 · [E1(x2, t) + E2(x2, t)] .
(4.7)

and the relevant basis is

B = {|11〉 , |12〉 , |13〉 , |21〉 , |22〉 , |23〉 , |31〉 , |32〉 , |33(R)〉}. (4.8)

In the next section, we check the validity of the last approximation under realistic
density conditions for a cloud of atoms.

2 3 4 5 6 7 8 9 10 11

-3

-2

-1

0

1

2

Figure 4.3: The dark curve corresponds to the potential for 60s60s. Lighter curves
represent the energy curves for other eigenstates. If we adjust a vdW potential C6/R

6

to the curve we obtain C6 = 251.869GHzµm6.



62 CHAPTER 4. ANTIBLOCKADE WITH TWO RYDBERG ATOMS

Second approximation

To test the validity of reducing the basis, we perform an analysis of the probability of
finding a pair of atoms closer than 4µm on a cloud of 104 atoms. We assume that the
radius of the cloud is 3.33µm.

We consider that each component of the position of each atom follows a Gaussian
distribution of the form

P (xi) =
1√

2πσ2
e−

x2i
2σ2 .

If we have N atoms within the cloud, then we have N(N−1)
2

different pairs of atoms and
distances between pairs. These distances have the distribution

Pd(d) =

∫
A.S.

dV1

∫
A.S.

dV2δ(
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − d)
∏
i=1,2
χ=x,y,z

P (χi),

where dVi ≡ dxidyidzi and the subscript A.S. means that the integral is over all the
space. In order to do this integral we change to the variables xr = x1 − x2 and
x = x1 +x2 for each component. Writing explicitly each P (χi) and taking into account
that for each transformation, the jacobian is J = 1

2
, we get

Pd(d) =
1

(4πσ2)3

∫ ∞
−∞

dxr

∫ ∞
−∞

dx...δ(
√
x2
r + y2

r + z2
r − d)e−

x2r+x
2+y2r+y

2+z2r+z
2

4σ2 .

Here we have used the notation ... to indicate that identical integrals are performed
for variables y and z.. The integrals on x, y, and z can be done trivially. We then have

Pd(d) =
1

(2π3/2σ)3

∫ ∞
−∞

dxr...δ(
√
x2
r + y2

r + z2
r − d)e−

x2r+y
2
r+z

2
r

4σ2 .

Next we change to spherical coordinates

Pd(d) =
1

(2π3/2σ)3

∫ 2π

0

dφ

∫ π

0

dθsinθ

∫ ∞
0

R2dRδ(R− d)e−
R2

4σ2

=
1

2
√
πσ3

d2e−
d2

4σ2 .

(4.9)

In figure 4.4 we plot the histogram of distances between atoms from a cloud of 104

atoms generated with Gaussian distributions for each coordinate, and the distribution
(4.9). We observe that the average is above the limit set for the approximation to be
valid.
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Figure 4.4: Distribution of the separation between atoms in the cloud.

Using the distribution, we find that only around 13% of the pairs of atoms have
R ≤ 4µm. From this, we conclude that at least for the case where |33〉 = |60s60s〉,
the approximation is reasonable. This could become false if instead of 60s60s we have
states with bigger principal quantum numbers.

Taking the second approximation to be valid, the Hamiltonian describing the dynamics
induced by light is indeed (4.7). The next step is to express the part of the Hamiltonian
(4.7) that describes the interaction with light in terms of basis (4.8).

Hamiltonian in the coupled basis

We assume that the electric field of laser 1 is the same at the positions of both atoms
E1(x1, t) ' E1(x2, t) ≡ E1(t). We further assume that both lasers can be represented
by plane waves. Since laser 1 is resonant with just the lower transition, its interaction
with the atoms can be expressed as

Ĥ1 = −E1(t) · (d̂1 + d̂2) =
~Ω1

2

∑
j=1,2

(
σ̂

(j)
12 e

iω1t + σ̂
(j)
21 e
−iω1t

)
. (4.10)

in the rotating wave approximation. The Rabi frequency for the first laser is

Ω1 = −〈1|d̂|2〉 · E1

~
. (4.11)

Likewise, we assume the field of laser 2 to be the same at the positions of both atoms.
To write the term describing the interaction of the second laser with the atoms, we
insert two identities on each side of it:
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Ĥ2 = −E2(t) · (d̂1 + d̂2)

= [|11〉 〈11|+ |12〉 〈12|+ |13〉 〈13|+ |21〉 〈21|+ |22〉 〈22|+ |23〉 〈23|
+ |31〉 〈31|+ |32〉 〈32|+ |33(R)〉 〈33(R)|][−E2 · (d̂1 + d̂2)]

[|11〉 〈11|+ |12〉 〈12|+ |13〉 〈13|+ |21〉 〈21|+ |22〉 〈22|+ |23〉 〈23|
+ |31〉 〈31|+ |32〉 〈32|+ |33(R)〉 〈33(R)|].

Since the second laser is quasi-resonant only to the transition |2〉 → |3〉, most of the
terms will oscillate with a frequency far from ω2 and hence can be neglected. The
surviving terms are

Ĥ2 = −E2(t) · d[|12〉 〈13|+ |21〉 〈31|+ |22〉 〈23|+ |22〉 〈32|+ h.c]

− E2(t) · [|33(R)〉 〈33(R)| (d̂1 + d̂2)(|32〉 〈32|+ |23〉 〈23|) + h.c]

− E2(t) · |33(R)〉 〈33(R)| (d̂1 + d̂2) |33(R)〉 〈33(R)| .

In order to calculate the last two terms in the above expression we need to know the
coefficients c33

αβ(R) that appear in the expansion of |33(R)〉 in equation 4.3. In figure
4.5 we plot those coefficients when 3 = 60s1/2.

60s 1/2 60s 1/2
60p 3/2 59p 3/2
59p 3/2 60p 1/2
60p 3/2 59p 1/2
60p 3/2 59p 1/2
59p 3/2 60p 1/2
60p 3/2 59p 3/2

0
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0.4

0.6

0.8

1

2 4 6 8 10 12
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Figure 4.5: The most important composition coefficients of the state |33(R)〉 vs. R.
The principal component corresponds to the state 60s1/260s1/2, as expected.

We see that, apart from |33〉, the most important contributions to |33(R)〉 come from
np-mp states, so we can approximate |33(R)〉 as
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|33(R)〉 =
∑
αβ

c33
αβ(R) |αβ〉 ' C33(R) |33〉+

∑
ij

Cij(R) |pipj〉 . (4.12)

This behavior is expected since p-p states directly couple to |33〉 through Hdd. s-s, d-d
and s-d states couple only to second order, so their contribution is weaker.
Knowing this, let us calculate one of the remaining terms. We will adopt the notation
c33
αβ(R) ≡ cαβ. Taking into account that |2〉 is odd under a parity transformation and

that |3〉 is even we have

|33(R)〉 〈33(R)| (d̂1 + d̂2) |32〉 〈32| =
∑
αβγδ

cαβc
∗
γδ 〈γδ|d̂1 + d̂2|32〉 |αβ〉 〈32| .

|γδ〉 can be either a p-p Rydberg state or |33〉. If it is a p-p state we get that

〈γδ|d̂1 + d̂2|32〉 = 〈np,mp|d̂1|32〉 = 〈np|d̂1|3〉 〈mp|2〉 = 0,

since d̂2 cannot couple states of the same parity. |γδ〉 represents a pair of Rydberg
states with m 6= 2 and hence this term is zero.

So the only non-zero contributions to the sum come from γ = 3, δ = 3:

|33(R)〉 〈33(R)| (d̂1 + d̂2) |32〉 〈32| =
∑
αβ

cαβc
∗
33 |αβ〉 〈32| .

|αβ〉 〈32| will oscillate as eit(Eα+Eβ−E3−E2). Assuming this as a fast oscillation except
in the case when α = 3, β = 3, we approximate the last result as

|33(R)〉 〈33(R)| (d̂1 + d̂2) |32〉 〈32| ' |c33|2 |33〉 〈32| . (4.13)

Using the same reasoning we get

|33(R)〉 〈33(R)| (d̂1 + d̂2) |23〉 〈23| ' |c33|2 |23〉 〈23| . (4.14)

The last term can be written as:

|33(R)〉 〈33(R)| (d̂1 + d̂2) |33(R)〉 〈33(R)| =
∑

αβγδζηµν cαβcγδc
∗
ζηc
∗
µν 〈ζη|d1 + d2|αβ〉 |γδ〉 〈µν| .

The operator |γδ〉 〈µν| will rotate at a frequency of 1
~(εγ + εδ − εµ− εν), that will be of

the order of GHz (because all the levels involved are Rydberg levels)1. On the other
hand, the frequency of the laser is of the order of THz. This means we can neglect
this last term. So the term describing the interaction of atoms with the second laser
is (applying the RWA in the surviving terms)

1This is not true for the case where γ = µ and δ = ν. These terms will only cause shifts. In
particular, they will not induce a non-desired transition to double Rydberg states different from |33〉.
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Ĥ2 =
~Ω2

2

[
(|12〉 〈13|+ |21〉 〈31|+ |22〉 〈23|+ |22〉 〈32|)eiω2t + h.c

]
+

~Ω2c
2
33

2

[
(|32〉 〈33|+ |23〉 〈33|)eiω2t + h.c.

]
.

(4.15)

The complete Hamiltonian is

Ĥ = ε2

(
σ̂

(1)
22 + σ̂

(2)
22

)
+ ε3(σ̂

(1)
33 + σ̂

(2)
33 ) + ∆33(R)c33(R)2 |33〉 〈33|

+
~Ω1

2

∑
j=1,2

(
σ̂

(j)
12 e

iω1t + h.c
)

+ Ĥ2.
(4.16)

Note that under the approximation c33 ' 1 the Hamiltonian reduces to

Ĥ = ε2

(
σ̂

(1)
22 + σ̂

(2)
22

)
+ ε3(σ̂

(1)
33 + σ̂

(2)
33 ) + ∆33(R) |33〉 〈33|

+
~Ω1

2

∑
j=1,2

(
σ̂

(j)
12 e

iω1t + h.c
)

+ +
~Ω2

2

∑
j=1,2

(
σ̂

(j)
23 e

iω2t + h.c.
)
.

(4.17)

We will use Hamiltonian (4.17) in next sections, keeping in mind that it is useful as
long as c33 ' 1. This happens for R ≥ 4µm (figure 4.5). Results of using (4.17) for
R ≤ 4µm need to be validated by comparing them with the results obtained by using
Hamiltonian (4.16).

4.2 Rotating Frame

We now express the Hamiltonian (4.17) in the rotating frame defined by

Ĥ0 = ~

0 0 0
0 ω1 0
0 0 ω1 + ω2

⊗ I

+ I⊗ ~

0 0 0
0 ω1 0
0 0 ω1 + ω2

 .

On this frame, the Hamiltonian 4.17 can be expressed as (where Û = e
iĤ0t
~ )

H̄ = ÛĤÛ † + i~(∂tÛ)Û †

= ∆1

(
σ̂

(1)
22 + σ̂

(2)
22

)
+ (∆1 + ∆2)

(
σ̂

(1)
33 + σ̂

(2)
33

)
+ ∆33(R) |33〉 〈33|

+
~Ω1

2

∑
j=1,2

(
σ̂

(j)
12 + h.c

)
+

~Ω2

2

∑
j=1,2

(
σ̂

(j)
23 + h.c.

)
.

(4.18)

From now on, we will denote H̄ simply by Ĥ, taking under consideration that this is
expressed in the rotating frame.
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4.3 Master equation and simulations

If we consider that |3〉 decays to level |2〉 with rate γ3, and that |2〉 decays to |1〉 with
rate γ2, then the master equation that describes the system is (equation (1.45) deduced
in the first chapter)

ρ̇ = − i
~

[
Ĥ, ρ

]
+ L [ρ]

L [ρ] =
∑
m

γ2

2

(
2σ̂

(m)
12 ρσ̂

(m)
21 − σ̂

(m)
21 σ̂

(m)
12 ρ− ρσ̂(m)

21 σ̂
(m)
12

)
+
∑
m

γ3

2

(
2σ̂

(m)
23 ρσ̂

(m)
32 − σ̂

(m)
32 σ̂

(m)
23 ρ− ρσ̂(m)

32 σ̂
(m)
23

)
.

(4.19)

We have set n̄ = 0 for both decays, since at temperatures equal or lower to the room
temperature, the average number of optical photons is negligible.

We used realistic numerical parameters for the system ([35],[47]):

• Ω2 = 2π × 20 MHz.

• ∆1 = 2π × 100 MHz, ∆2 = −2π × 100 MHz.

• The lifetime for 43S in 87Rb is 42.3 µs, so that γ3 ' 0.02 MHz.

• The lifetime for 5P in 87Rb is 26.2 ns, so that γ2 ' 38 MHz.

4.3.1 Connected correlation, populations and coherences in
the steady state

The steady state of equation (4.19) is the solution of

ρ̇ = 0. (4.20)

This poses a set of coupled algebraic equations for the elements of the density matrix
ρij. We use Mathematica to obtain the solution. Once we have the steady state ρst, we
calculate the expected values of populations and coherences for each atom. Besides,
we calculate the connected correlation, defined as [50]

〈σ̂(1)
33 σ̂

(2)
33 〉C =

〈σ̂(1)
33 σ̂

(2)
33 〉

〈σ̂(1)
33 〉〈σ̂

(2)
33 〉
− 1. (4.21)

This quantity will be useful to define the blockade radius: if the atoms are separated
a distance such that the dipolar interaction is negligible, then the atoms are expected
to be completely uncorrelated, and 〈σ̂(1)

33 σ̂
(2)
33 〉 ' 〈σ̂

(1)
33 〉〈σ̂

(2)
33 〉. So 〈σ̂(1)

33 σ̂
(2)
33 〉C → 0 when

R → ∞. If, on the other hand, the atoms are close to one another and the shift
generated by dipolar interaction is important we expect to have Rydberg blockade.
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This means we cannot have the two atoms simultaneously excited. Because of this,
we expect that as R → 0, 〈σ̂(1)

33 σ̂
(2)
33 〉C → −1. The region of the R parameter between

these two behaviors will contain the blockade radius.

In figures 4.6, 4.7 and 4.8 we show the results for the connected correlation, the pop-
ulations and the coherences vs the separation between atoms. Interestingly, if we use
Hamiltonian (4.16) instead of Hamiltonian (4.17) (that is, if we take into account that
c33 depends on the distance), we obtain the same results for the range of distances
explored (R ∈ [2µm, 12µm]). In spite of this, we restrict the analysis to R ≥ 4µm
since, as we have mentioned, it is the range at which we can safely neglect the effect
of Rydberg states other than |3〉 on the dynamics of the system.

In figure 4.6 we observe an unusual behavior for the correlation function as we lower the
ratio Ω1

Ω2
. The three cases in the figure obey our intuition asymptotically: as R → ∞

the three of them tend to 0, signaling an uncorrelated evolution between the atoms.
At R → 0 the correlation goes to -1, indicating that the double excitation has been
inhibited. In the intermediate region, we see a hump with a dip in between. A pos-
itive correlation means that the double excitation is favored over a single excitation,
signaling an antiblockade. The dip in the middle of the hump is a destruction of this
condition.
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Figure 4.6: Connected correlation for different ratios of the two Rabi frequencies. The
structure in the intermediate region appears on a continuous manner as we vary Ω1

Ω2
. The

blue and red dashed lines indicate the position of the respective dip in the correlation.
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Figure 4.7: Population of the double excited state, first, second and third state of an
individual atom. All the plots follow the color code of 〈σ̂(1)

11 〉. The blue and red dashed
lines indicate the position of the dip in the respective correlation.
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Figure 4.8: Coherences of individual atoms. All the plots follow the color code of
Im〈σ̂(1)

12 〉. The blue and red dashed lines indicate the position of the dip in the respective
correlation.

In figures 4.7 and 4.8 we see that this dip is accompanied by singular behavior in the
populations and coherences of the atom. The dip in the correlation coincides with
a dip in the population of the ground state, and a peak in both the populations of
the intermediate and Rydberg level (although the population of the intermediate level
remains always negligible when compared with the other two populations). At the same
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R, the imaginary parts of the coherences present dips. The coherences of individual
atoms give information on the electric linear susceptibility of a medium formed by such
atoms (see for example equation (1.48)), and thus on the absorption coefficient and
refractive index incoming light sees in the medium.

4.3.2 Avoided Crossings

The region of positive correlation occurs around an avoided crossing in the Hamiltonian
(4.18) describing the unitary evolution of the system, as noted in figure (4.9).

In the limit R→∞ the interaction between atoms ∆ goes to zero, and we recover

Ĥ = Ĥ3 lev ⊗ I + I⊗ Ĥ3 lev, (4.22)

where Ĥ3 lev is the three-level atom Hamiltonian of chapter 1. For the case of two-
photon-resonance the eigenvectors of Hamiltonian (4.22) describing the atoms dressed
with light are |aiaj〉 with i, j = 0,+,−. From the parameters we have chosen, and
expressions for mixing angles and eigenstates, (1.41) and (1.40), we see that |a0〉 ≈ |1〉,
|a+〉 ≈ |2〉 and |a−〉 ≈ |3〉.

In figure (4.9) we label different eigenvalues according to the eigenvalue they tend to as
R →∞. From this figure, we observe that eigenvalues appreciably depend on R only
when they have a significant contribution of the state |33〉. In the following, we denote
|aiaj〉R to be the eigenvector of the system of atoms separated by R that asymptotically
corresponds to |aiaj〉.

When atoms are far apart, the only eigenvalue that seems to depend on R is the one
corresponding to |a−a−〉R. The dependence of this curve on R leads to an avoided
crossing with the energy curves of |a−a0〉±R at R ≈ 6µm. |a−a0〉−R is decoupled from
states that are symmetric under the exchange of both atoms, so its energy curve will
continue to be flat. On the other hand, there will be a mixture between eigenstates
corresponding to |a−a0〉+R and |a−a−〉R. The energy curve of |a−a0〉+R goes upwards
and makes another avoided crossing with |a0a0〉R. At this avoided crossing |a0a0〉R
and |a−a0〉+R admix. This has consequences on the stationary state since |a0a0〉 is
approximately the stationary state of the system without interactions

ρst∞ ' |a0a0〉 〈a0a0| .

This is due to the fact that γ2 � γ3 (we saw in chapter 1 that for γ3 = 0f the station-
ary state of one three-level atom is |a0〉 〈a0|). Around the avoided crossing, we should
expect an increase in the contribution of |33〉 in the stationary state. In other words,
we should expect the double excitation to be favored and an increase in the connected
correlation.
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Figure 4.9: Avoided crossing in the spectrum of Hamiltonian coincides with the dip in
the center of the hump in the correlation. The dashed line indicates both the position
of the avoided crossing and the dip (5.34 µm) (a) Eigenvalues of Hamiltonian vs. R
(black). The red dots signal the eigenvalue whose eigenvector ψ has the maximum
overlap with state |33〉. Similarly, green dots signal maximum overlap with |11〉. The
gray curves correspond to eigenvalues when Ω1 = 0. (b) Value of maximum overlap
with |33〉 (red) and |11〉 (green). (c) Connected correlation. (a), (b) and (c) were made
with Ω2

Ω1
= 4.
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This explanation also gives us a way to estimate the position of the region at which
we have positive connected correlation. If we assume that when eigenvalues vary with
R, they do it with a C6

R6 dependence, then Rd, the position of the avoided crossing and
the dip, must satisfy

E−− = ∆1 −
√

∆2
1 + Ω2

1 + Ω2
2 =

C6

R6
d

. (4.23)

Besides this, we see that we are able to approximate the stationary state of the system
from one and the other side of the avoided crossing by the corresponding eigenvector
with the greatest overlap with |a0a0〉 (figure 4.10). The results for double-excited state
population and the connected correlation can be well-approximated in this way at
points far from the avoided crossing. The discrepancy near the avoided crossing means
that other eigenstates have a non-negligible contribution to the stationary state.
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Figure 4.10: Green curve corresponds to the steady state results. The black one is
obtained from the eigenvectors of Ĥ as described above. (a) Double-excited state
population and (b) Connected correlation.

A word on the dip

The above discussion on the avoided crossing and its connection to the facilitation of
excitation seems to suggest that the distance Rd at which the avoided crossing occurs
should also be the distance at which we observe the maximum antiblockade. In other
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words, the presence of the dip at Rd in the correlation seems counterintuitive in light
of the interpretation we have given to the avoided crossing.

In order to further explore this, we notice that we have ignored the state |a−a0〉+
altogether. The avoided crossing at Rd =5.34 µm implies admixing of non only |a0a0〉R
and |a−a−〉R, but also of |a0a0〉R with |a0a−〉+R. This hints that the steady state ρst

should also have a significant contribution from |a0a−〉+R. This suspicion is confirmed
by computing the fidelities of ρst with |a0a0〉, |a0a−〉 and |a−a−〉 (figure 4.11). In fact, we
see that F (ρst, |a−a−〉) ' F (ρst, |a0a−〉)+ in all the range of distances considered. This
makes us realize that, even tough the avoided crossing argument is useful to identify
the location of the intermediate structure, it does not fully explain the physics behind
it. In particular, it does not provide an explanation for frustration of antiblockade (the
dip).
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Figure 4.11: Fidelities of ρst with |a0a0〉R, |a0a−〉+R and |a−a−〉R.

4.4 Adiabatic elimination

In most of the theoretical work involving Rydberg atoms excited using the two-photon
scheme, the adiabatic elimination of the second level is performed (see for example [34],
[46] and [47]). An interesting question is: Do the blockade and antiblockade regions
observed in last section survive the adiabatic elimination?

We perform the elimination of the second level on each atom, as outlined in chapter
1. After the elimination, each atom is now a two-level system (with levels |1〉 and |3〉).
An effective field interacts with the atoms, with Rabi frequency and detuning given by

Ωeff = −Ω1Ω2

2∆1

,

∆eff = ∆1 + ∆2 +
Ω2

1 − Ω2
2

4∆1

.

(4.24)

The decay of the upper level is γeff = γ3 +
(γ2+γ3)Ω2

2

(2∆2)2
. After performing the elimination,
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we calculate the connected correlation in the stationary state of the system, and see
that the features observed in last section survive the elimination (figure 4.12).
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Connected Correlation

3 levels

2 levels

Figure 4.12: Comparison between the connected correlation obtained before (black)
and after (blue) performing adiabatic elimination.

4.5 Four-photon transition

Seeking to further characterize the region of positive correlation, we now turn to study
possible correlations in the rates of excitations of different states. The expectation
value for the polarization in the stationary state,

〈P̂〉 =
1

V
〈d̂1 + d̂2〉,

gives information on the linear susceptibility of a medium composed by pairs of inter-
acting atoms. The process in which the two atoms are excited from the ground state
to the Rydberg state involves the absorption of four photons. To characterize it, we

need to calculate the expectation value of 〈P̂
4
〉 = 〈(P̂ · P̂)(P̂ · P̂)〉.

We relabel the states as

|11〉 → |1〉, |21〉 → |4〉 , |31〉 → |7〉 ,
|12〉 → |2〉, |22〉 → |5〉 , |32〉 → |8〉 ,
|13〉 → |3〉, |23〉 → |6〉 , |33〉 → |9〉

to lighten the notation, and make d12 ≡ 〈5s1/2|er̂|5p3/2〉, d23 ≡ 〈5p3/2|er̂|60s1/2〉. 〈P̂〉
and 〈P̂ · P̂〉 in terms of the density matrix elements are

〈P̂〉 =
Ne

V
{d (1)

12 (ρ41 + ρ52 + ρ63) + d
(2)

12 (ρ21 + ρ54 + ρ87)

+ d
(1)

23 (ρ74 + ρ85 + ρ96) + d
(2)

23 (ρ32 + ρ65 + ρ98) + h.c.},
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〈P̂ 2〉 = 〈P̂ · P̂〉

=
e2N2

V 2
{[(d (1)

12 · d
(1)∗

12 )(ρ11 + ρ22 + ρ33 + ρ44 + ρ55 + ρ66)

+ (d
(2)

12 · d
(2)∗

12 )(ρ11 + ρ44 + ρ77 + ρ22 + ρ55 + ρ88)

+ (d
(1)

23 · d
(1)∗

23 )(ρ44 + ρ55 + ρ66 + ρ77 + ρ88 + ρ99)

+ (d
(2)

23 · d
(2)∗

23 )(ρ22 + ρ33 + ρ55 + ρ66 + ρ88 + ρ99)

+ [2(d
(1)

12 · d
(2)

12 )ρ51 + 2(d
(1)

23 · d
(2)∗

12 )ρ75

+ 2(d
(1)

12 · d
(2)

23 )ρ62 + 2(d
(1)

12 · d
(2)∗

12 )ρ42

+ 2(d
(1)

12 · d
(2)∗

23 )ρ53 + 2(d
(1)

23 · d
(2)

12 )ρ84

+ 2(d
(1)

23 · d
(2)∗

23 )ρ95 + 2(d
(1)

23 · d
(2)∗

23 )ρ86

+ (d
(1)

12 · d
(1)

23 )(ρ71 + ρ82 + ρ93) + (d
(2)

12 · d
(2)

23 )(ρ31 + ρ64 + ρ97) + c.c.]}.

(4.25)

We have adopted the notation d
(k)

12 to indicate that the matrix element was taken on
the atom k. 〈P̂〉 contains all the possible transitions of one photon in the system.
Likewise, 〈P̂ 2〉 and 〈P̂ 4〉 contain all the possible transitions of two and four photons,
respectively. For instance, the first term in the last line in the expression (4.25) for 〈P̂ 2〉
describes the process where atom 2 undergoes a transition |1〉 → |2〉 and then a transi-
tion |2〉 → |3〉. The quantity that characterizes such a process is then (ρ31 + ρ64 + ρ97).
Similarly, the last term of the expression (4.25) corresponds to the same process in
atom 1.

In particular, the part of 〈P̂ 4〉 that corresponds to the two atoms absorbing two photons
each is

〈P̂ 4
4ph〉 =

e4N4

V 4
ρ91{2(d

(1)
12 · d

(1)
23 )(d

(2)
12 · d

(2)
23 ) + 4(d

(1)
12 · d

(2)
12 )(d

(1)
23 · d

(2)
23 )}. (4.26)

The matrix element that characterizes the transition from ground state to double Ryd-
berg state is ρ91 = ρ33 11. In figure 4.13 we plot this coherence along with the coherences
that correspond to the excitation of a single atom to the Rydberg state. We see that
at the point of the avoided crossing ρ33 11 is enhanced: the real and imaginary part
of ρ33 11 have a larger value at the resonance condition than the coherences associated
with the transition |1〉 → |3〉 of a single atom.
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Figure 4.13: Real (solid lines) and imaginary parts (dashed lines) of coherences related
with the transition |1〉 → |3〉 in the second atom. At the avoided crossing region the
coherence related to |11〉 → |33〉 (blue lines) is enhanced. This signals the presence of
antiblockade.

Furthermore, we can define a new connected correlation,

〈P 4〉c ≡ |ρ91| − |(ρ71 + ρ82 + ρ93)(ρ31 + ρ64 + ρ97)|. (4.27)

As we have said before, ρ91 describes the transition where both atoms make the tran-
sition |1〉 → |3〉. On the other hand, (ρ71 + ρ82 + ρ93) describes atom 1 going from
|1〉 → |3〉 regardless of what atom 2 does, and (ρ31 + ρ64 + ρ97) describes atom 2 going
from |1〉 → |3〉 regardless of what atom 1 does. If the excitation of both atoms is
independent, then |ρ91| ' |(ρ71 + ρ82 + ρ93)(ρ31 + ρ64 + ρ97)| and 〈P 4〉c ' 0. 〈P 4〉c 6= 0
signals parameter regions where the excitation of each atom to a Rydberg state inter-
fere with one another (either constructively or destructively). In figure 4.14 we see that
the correlation goes to zero for large interatomic distances, as expected. For distances
5 . R . 8 we see a positive correlation and hence a facilitation of double excitation.
For R . 5 the facilitation disappears and the correlation becomes negative. This is in
agreement with figure 4.9, that identifies 4 ≤ R . 5 as the region of Rydberg blockade.

Note that the analysis of the avoided crossings above is useful to both determine the
position of the antiblockade region and gain intuition on the stationary state of the sys-
tem at different interatomic distances. Nevertheless, the analysis of correlation (4.27)
is necessary to realize that blockade and antiblockade regions are caused by the inter-
ference between excitation channels.

We also observe that, whereas adiabatic elimination simplifies the problem, it blurs the
physical interpretation of different channels of excitation interfering with one another.
Without elimination, ρ91 represents a four-photon transition, where each photon is
attributable to one of the two fields present in the model. If we were to define the
correlation (4.27) in the model after elimination, the process in which both atoms go
from the ground state to the Rydberg state would be an effective two-photon process,
where each photon does not belong exclusively to either of the fields.
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Figure 4.14: Four-photon connected correlation for the parameters of figure 4.9. Its
behavior agrees qualitatively with the connected correlation for population (figure 4.6).



Chapter 5

Conclusions

We numerically calculated the potentials of interaction for rubidium Rydberg atoms.
For this, we used an effective potential to model alkaline atoms, and symmetry ar-
guments to build a significant basis for the calculation. Additionally, a study of the
connected correlation, population and coherences of two atoms interacting through
such a potential was performed. We draw the following conclusions:

• The interaction potentials obtained reproduce the C6 ∝ n11 intuitively expected.

• Due to the truncation of the multipole expansion for the interaction, the Le Roy
radius and the fact that admixing of states due to interaction becomes important
at small distances, the validity of this analysis is bounded from below in dis-
tances. The minimum value of the interatomic distance depends on the degree of
excitation of the atoms. The state studied in this thesis was |60s1/260s1/2〉, and
the lower bound of validity was estimated at R ' 4µm.

• Studying the connected correlation, we are able to identify interatomic distance
ranges for having blockade and antiblockade in two 87Rb atoms, using realistic
values for the Rabi frequencies and detunings.

• The position of the antiblockade region corresponds to the position of an avoided
crossing in the eigenvalues of the Hamiltonian describing the unitary evolution
of the system. The avoided crossing is the result of the light-induced energy
structure of the atomic system and the interaction between atoms.

• The processes that correspond to the excitation of each atom from the ground
state to the Rydberg state can interfere constructively or destructively. An-
tiblockade and blockade are respectively associated with constructive and de-
structive interference.

There are some questions associated with this work that remain unexplored:

• The code for calculating Rydberg potentials could be extended to the case of
three atoms. The effect of a third atom on the correlation could be explored.
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• In the case of a dense gas, the mixing of Rydberg levels due to interaction dis-
cussed at the beginning of chapter 4 could play an important role. This could
contribute to the creation of the so-called Rydberg contaminants [25] (atoms in
Rydberg states different to the one we wanted to excite originally).

• The adiabatic elimination of the second level means we could reduce the dimen-
sion of the density matrix and produce a simpler set of equations to be solved
for obtaining the steady state. This could be explored to gain further intuition
on the cause of appearance of the dip.

• Extend the study to arrays of atoms with lattice constant belonging to the block-
ade or antiblockade region and see how it affects or relates to the antiferromag-
netic and bistable phases of arrays of Rydberg atoms [48] .



Appendix A

Matrix Numerov method

Our objective is to solve the Schrödinger equation in one dimension. This can be done
with the usual Numerov method, where one guesses the energy and then integrates
the equation from the initial boundary to the final one. The guess of the energy is
refined until one is able to fulfill both boundary conditions. This method can become
inefficient if one is interested in solving the Schrödinger equation for multiple energies,
as is our case.

An attractive alternative to this procedure is the matrix Numerov method [51]. This
method consists in discretizing the wavefunction and converting the problem to a ma-
trix eigenvalue problem. Let the interval where we want to solve for the wavefunctions
be [xI , xF ]. We pick an equispaced lattice of points {xi} belonging to this interval and
describe a wavefunction with a vector whose components are the values of the wave-
function at these points. The operators that form the Schrödinger equation become
matrices in this approach.

The Schrödinger equation in 1D has the form

ψ′′(x) = −2m
(E − V (x))

~2
ψ(x).

By expanding ψ′′(x) using second-order finite differences, we are left with the expression

−~2

2m
B−1Aψ + Vψ = Eψ, (A.1)

where ψ ≡ (ψ(xI), ψ(x1), ..., ψ(xF )), V = diag(V (xI), ...V (xF )), and A and B are
simple matrices whose expressions can be found in [51]. The important observation to
make is that A.1 is an eigenvalue problem. By diagonalizing the matrix on the left side
we obtain a set of eigenvectors and eigenvalues. Conveniently, by increasing the number
of points on the lattice we can achieve more precision in the obtained wavefunctions
and get more eigenenergies and wavefunctions. The error in the method goes as ∼ d4,
where d is the step size.
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A.1 Solution of the radial Schrödinger equation

The equation we are interested in solving is

d2u

dr2
+ 2

(
E − VM −

`(`+ 1)

2r2

)
u = 0, (A.2)

where VM is the Marinescu potential. In particular, we are interested in solving the
problem for high-energy states. There are two main reasons why it is not straightfor-
ward to solve this equation with the method we just reviewed:

• We expect the wavefunctions that are solution of the equation (A.2) to have a
similar behavior to the radial hydrogen wavefunctions. In figure A.1, near the
origin, we can observe the hydrogen radial wavefunction for a high energy state.
This wavefunction has an increasing density of oscillations as we approach to
the origin. Thus, in order to solve the problem efficiently, it would be desirable
to have a lattice that mimics this behavior: more points as we approach to the
origin.

• We have a singularity in the potential at r = 0. This can be fixed by restricting
the interval where we solve the equation to [rmin, rmax], and making rmin a small
non-zero number.
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Figure A.1: Hydrogen radial wavefunction with n = 40. Image taken from [52]

The first point is fixed by considering an equispaced lattice {si} and making a new
non-equispaced lattice {ri} with ri = s2

i . The lattice {ri} will then have a bigger
density of points near the origin. Next, we first make the change variable r = s2 in
equation (A.2), so we obtain the equation we should solve for the equispaced lattice s.

In order to obtain an equation with the form ψ′′(s) = f(s)ψ(s) and apply the method
on last section directly, we make u(r) = J(s(r))ψ(s(r)) [52]. J will be used to eliminate
factors that contain the first derivative of χ. The second derivative in (A.2) is then

d2u

dr2
=
ψ(s)J ′′(s)

4s2
− ψ(s)J ′(s)

4s3
+

(
J ′(s)

2s2
− J(s)

4s3

)
χ′(s) +

J(s)ψ′′(s)

4s2
. (A.3)
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So we need J ′(s)
2s2
− J(s)

4s3
= 0. The solution to that equation is J(s) =

√
s. So, making

u(s) =
√
sχ(s), the equation that χ(s) satisfies is

χ′′(s) = 8s2

(
3

32s4
+ Veff

(
s2
)
− E,

)
χ(s) (A.4)

with Veff(s2) = V (s2) + `(`+1)
2s4

. The equation A.4 has the form ψ′′(s) = f(s)ψ(s), so we
can apply the method described in the first section.

A.2 Example: Hydrogen atom

As a check, we apply the method to the case of hydrogen atom (making V (r) = 1
r
) and

compare the results with the exact wavefunctions. This is shown in figures A.2 and
A.3. There we see that the numerical method and the non-equispaced lattice produces
results that agree reasonably well with the exact wavefunctions, even for high-excited
states.
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Figure A.2: Comparison between Numerov and analytical wavefunctions.
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Figure A.3: Comparison between Numerov and analytical wavefunctions.



Appendix B

Wigner Symbols

The 3j and 6j Wigner symbols appear in the context of the sum of angular momenta.
Here we review its definitions, properties, and methods of calculation.

B.1 3j symbols

If we have a system composed of two particles, each with an angular momentum j1 and
j2, we define the total angular momentum as

ĵ = ĵ1 + ĵ2. (B.1)

There are two possible basis to represent the system:

• The decoupled basis {|j1, j2,m1,m2〉} of simultaneous eigenstates of {ĵ
2

1, ĵ
2

2, ĵ1z, ĵ2z}.

• The coupled basis {|j1, j2, J,M〉} of simultaneous eigenstates of {ĵ
2

1, ĵ
2

2, ĵ
2
, ĵz}.

The unitary transformation connecting the two basis is defined in terms of the Clebsch-
Gordan coefficients 〈j1, j2,m1,m2|J,M〉[53]

|j1, j2, J,M〉 =
∑
m1,m2

〈j1, j2,m1,m2|J,M〉 |j1, j2,m1,m2〉 . (B.2)

The 3j Wigner symbols are defined by(
j1 j2 J
m1 m2 −M

)
=

(−1)j1−j2−M√
2J + 1

〈j1, j2,m1,m2|j1, j2, J,M〉 . (B.3)

B.1.1 Properties

Some of their properties are:
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1. (
j1 j2 J
m1 m2 −M

)
6= 0 ⇐⇒ m1 +m2 = M and |j1 − j2| ≤ J ≤ j1 + j2.

The last condition is referred to as the triangular inequality. These selection rules
can be directly deduced from the properties of the Clebsch-Gordan coefficients.

2. They are invariant under a cyclic permutation of the three columns.(
j1 j2 J
m1 m2 −M

)
=

(
J j1 j2

−M m1 m2

)
.

B.1.2 Methods for calculation

By using the ladder operators

Ĵ± = ĵ1± + ĵ2±,

Ĵ± |JM〉 =
√
J(J + 1)−M(M ± 1) |JM〉 ,

we can deduce recurrence relations relating different Clebsch-Gordan coefficients. For
instance,

√
J(J + 1)−M(M + 1) 〈j1, j2,m1,m2|j1, j2, J,M〉 =

√
j1(j1 + 1)−m1(m1 + 1) 〈j1, j2,m1 + 1,m2|j1, j2, J,M + 1〉

+
√
j2(j2 + 1)−m2(m2 + 1) 〈j1, j2,m1,m2 + 1|j1, j2, J,M + 1〉 .

An analogous expression for 〈j1, j2,m1,m2|j1, j2, J,M〉 exists in terms of coefficients
with ∆M = −1. A recurrence relation connecting coefficients with ∆J = ±1 is also
available [53].
The only element present in the expansion (B.2) for the coupled basis element with
Jmax = Mmax = j1 + j2 is |j1, j2, j1, j2〉. From this and the definition (B.3) we can see
that

〈j1, j2, j1, j2|j1, j2, j1 + j2, j1 + j2〉 = 1. (B.4)

Starting with (B.4) with particular numerical numbers for j1 and j2 and using the
recurrence relations, it is straightforward to obtain the rest of the 3j Wigner symbols
for those particular ji. There is also a closed expression known as the Racah formula
[53]

(
a b c
α β γ

)
= (−1)a−b−γ

√
∆(abc)

√
(a+ α)!(a− α)!(b+ β)!(b− β)!(c+ γ)!(c− γ)!

×
∑
t

(−1)t [t!(c− b+ t+ α)!(c− a+ t+ β)!(a+ b− c− t)!(a− t− α)!(b− t− β)!] ,
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where

∆(abc) =
(a+ b− c)!(b+ c− a)!(c+ a− b)!

(a+ b+ c+ 1)!
.

is the triangular coefficient, and t in the sum takes all the values for which all the
factorials inside make sense. The program for Rydberg potentials calculates the Wigner
3j symbols using the Racah formula (the implementation was taken from [54]).

B.2 6j symbols

When we consider a system formed by three particles, each with an angular momentum
ĵi (i = 1, 2, 3), we have three different ways to construct the coupled basis. We choose
any two of the angular momenta and add them. Then, we couple the remaining one.
Each choice will produce a different basis. We will denote as |(j1j2)J12, j3, J〉 the basis
that was obtained by adding ĵ1 and ĵ2, and then adding ĵ3. Similarly |j1, (j2j3)J23, J〉
represents the basis resulting from adding ĵ2 and ĵ3, and then adding ĵ1. The coefficients
of the unitary transformation between these two basis define the 6j Wigner symbols
[53]

{
j1 j2 J12

j3 J J23

}
=

(−1)j1+j2+j3+J√
(2J12 + 1)(2J23 + 1)

〈|j1, (j2j3)J23, J〉 |j1, (j2j3)J23, J〉 . (B.5)

B.2.1 Properties

1.

{
j1 j2 j3

J1 J2 J3

}
6= 0 only if the 4 triads (j1j2j3), (j1J2J3), (J1j2J3) and (J1J2j3)

satisfy the triangular inequality.

2. They are invariant under the permutation of any pair of its columns.{
j1 j2 J12

j3 J J23

}
=

{
j2 j1 j3
J2 J1 J3

}
.

3. They can be expressed as a sum of 3j Wigner symbols

1

(2j3 + 1)

{
j1 j2 j3

j3 J J3

}
=

∑
M1,M2,M3,m1,m2

(−1)ζ
(

J1 J2 j3

M1 −M2 m3

)(
J2 J3 j1

M2 −M3 m1

)
×
(

J3 J1 j2

M3 −M1 m2

)(
j1 j2 j3

m1 m2 m3

)
,

where ζ ≡ (−1)J1+J2+J3+M1+M2+M3 .
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The last property, along with the method for calculating 3j Wigner symbols gives a
priori method for calculating 6j Wigner symbols (for particular values of ji and Ji we
compute all the 3j Wigner symbols involved and then perform the sum).

There is also a Racah formula for 6j Wigner symbols [55]

{
j1 j2 j3

J1 J2 J3

}
=
√

∆(j1j2j3)∆(j1J2J3)∆(J1j2J3)∆(J1J2J3)
∑
t

(−1)t(t+ 1)!

f(t)
, (B.6)

where ∆(abc) is the triangular coefficient and

f(t) = (t− j1 − j2 − j3)!(t− j1 − J2 − J3)!(t− J1 − j2 − J3)!(t− J1 − J2 − j3)!

(j1 + j2 + J1 + J2 − t)!(j2 + j3 + J2 + J3 − t)!(j1 + j3 + J1 + J3 − t)!.

The sum takes all the values of t for which f(t) makes sense. The program for Rydberg
potentials calculates the Wigner 6j using this formula (implemented in the script found
in [56]).
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